Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2307.09205
Cited By
Learning Dynamic Attribute-factored World Models for Efficient Multi-object Reinforcement Learning
18 July 2023
Fan Feng
Sara Magliacane
OffRL
OCL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Dynamic Attribute-factored World Models for Efficient Multi-object Reinforcement Learning"
8 / 8 papers shown
Title
Null Counterfactual Factor Interactions for Goal-Conditioned Reinforcement Learning
Caleb Chuck
Fan Feng
Carl Qi
Chang Shi
Siddhant Agarwal
Amy Zhang
S. Niekum
33
0
0
06 May 2025
Object-Centric World Model for Language-Guided Manipulation
Youngjoon Jeong
Junha Chun
S. Cha
Taesup Kim
OCL
VGen
84
0
0
08 Mar 2025
BlendRL: A Framework for Merging Symbolic and Neural Policy Learning
Hikaru Shindo
Quentin Delfosse
D. Dhami
Kristian Kersting
33
3
0
15 Oct 2024
Entity-Centric Reinforcement Learning for Object Manipulation from Pixels
Dan Haramati
Tal Daniel
Aviv Tamar
LM&Ro
OffRL
OCL
27
10
0
01 Apr 2024
Learning Reusable Manipulation Strategies
Jiayuan Mao
Joshua B. Tenenbaum
Tomás Lozano-Pérez
L. Kaelbling
SSL
28
12
0
06 Nov 2023
Discovering Object-Centric Generalized Value Functions From Pixels
Somjit Nath
G. Subbaraj
Khimya Khetarpal
Samira Ebrahimi Kahou
OCL
12
2
0
27 Apr 2023
Compositional Multi-Object Reinforcement Learning with Linear Relation Networks
Davide Mambelli
Frederik Trauble
Stefan Bauer
Bernhard Schölkopf
Francesco Locatello
OCL
28
17
0
31 Jan 2022
Self-supervised Reinforcement Learning with Independently Controllable Subgoals
Andrii Zadaianchuk
Georg Martius
Fanny Yang
SSL
57
16
0
09 Sep 2021
1