Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2307.14642
Cited By
v1
v2
v3
v4
v5
v6 (latest)
Linear Convergence of Black-Box Variational Inference: Should We Stick the Landing?
International Conference on Artificial Intelligence and Statistics (AISTATS), 2023
27 July 2023
Kyurae Kim
Yian Ma
Jacob R. Gardner
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Linear Convergence of Black-Box Variational Inference: Should We Stick the Landing?"
6 / 6 papers shown
Title
Natural Gradient VI: Guarantees for Non-Conjugate Models
Fangyuan Sun
Ilyas Fatkhullin
Niao He
BDL
182
0
0
22 Oct 2025
AutoSGD: Automatic Learning Rate Selection for Stochastic Gradient Descent
Nikola Surjanovic
Alexandre Bouchard-Côté
Trevor Campbell
126
1
0
27 May 2025
On Divergence Measures for Training GFlowNets
Neural Information Processing Systems (NeurIPS), 2024
Tiago da Silva
Eliezer de Souza da Silva
Diego Mesquita
BDL
341
4
0
12 Oct 2024
Efficient Mixture Learning in Black-Box Variational Inference
A. Hotti
Oskar Kviman
Ricky Molén
Victor Elvira
Jens Lagergren
242
2
0
11 Jun 2024
Understanding and mitigating difficulties in posterior predictive evaluation
Abhinav Agrawal
Justin Domke
UQCV
151
0
0
30 May 2024
Kernel Semi-Implicit Variational Inference
Ziheng Cheng
Longlin Yu
Tianyu Xie
Shiyue Zhang
Cheng Zhang
197
7
0
29 May 2024
1