ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.16422
  4. Cited By
Statistically Optimal Generative Modeling with Maximum Deviation from
  the Empirical Distribution

Statistically Optimal Generative Modeling with Maximum Deviation from the Empirical Distribution

31 July 2023
Elen Vardanyan
Sona Hunanyan
T. Galstyan
A. Minasyan
A. Dalalyan
ArXivPDFHTML

Papers citing "Statistically Optimal Generative Modeling with Maximum Deviation from the Empirical Distribution"

7 / 7 papers shown
Title
A Good Score Does not Lead to A Good Generative Model
A Good Score Does not Lead to A Good Generative Model
Sixu Li
Shi Chen
Qin Li
DiffM
64
15
0
10 Jan 2024
Wasserstein GANs are Minimax Optimal Distribution Estimators
Wasserstein GANs are Minimax Optimal Distribution Estimators
Arthur Stéphanovitch
Eddie Aamari
Clément Levrard
20
2
0
30 Nov 2023
Riemannian Score-Based Generative Modelling
Riemannian Score-Based Generative Modelling
Valentin De Bortoli
Emile Mathieu
M. Hutchinson
James Thornton
Yee Whye Teh
Arnaud Doucet
DiffM
209
163
0
06 Feb 2022
Rates of convergence for density estimation with generative adversarial
  networks
Rates of convergence for density estimation with generative adversarial networks
Nikita Puchkin
S. Samsonov
Denis Belomestny
Eric Moulines
A. Naumov
17
5
0
30 Jan 2021
Extracting Training Data from Large Language Models
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
267
1,798
0
14 Dec 2020
Statistical guarantees for generative models without domination
Statistical guarantees for generative models without domination
Nicolas Schreuder
Victor-Emmanuel Brunel
A. Dalalyan
GAN
54
34
0
19 Oct 2020
Machine Learning for Stochastic Parameterization: Generative Adversarial
  Networks in the Lorenz '96 Model
Machine Learning for Stochastic Parameterization: Generative Adversarial Networks in the Lorenz '96 Model
D. Gagne
H. Christensen
A. Subramanian
A. Monahan
AI4CE
BDL
33
137
0
10 Sep 2019
1