ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.16526
  4. Cited By
No Fair Lunch: A Causal Perspective on Dataset Bias in Machine Learning
  for Medical Imaging

No Fair Lunch: A Causal Perspective on Dataset Bias in Machine Learning for Medical Imaging

31 July 2023
Charles Jones
Daniel Coelho De Castro
Fabio De Sousa Ribeiro
Ozan Oktay
Melissa McCradden
Ben Glocker
    FaML
    CML
ArXivPDFHTML

Papers citing "No Fair Lunch: A Causal Perspective on Dataset Bias in Machine Learning for Medical Imaging"

9 / 9 papers shown
Title
Bias Assessment and Data Drift Detection in Medical Image Analysis: A
  Survey
Bias Assessment and Data Drift Detection in Medical Image Analysis: A Survey
Andrea Prenner
Bernhard Kainz
26
0
0
26 Sep 2024
Semi-Supervised Learning for Deep Causal Generative Models
Semi-Supervised Learning for Deep Causal Generative Models
Yasin Ibrahim
Hermione Warr
Konstantinos Kamnitsas
OOD
MedIm
CML
GAN
16
1
0
27 Mar 2024
RadEdit: stress-testing biomedical vision models via diffusion image
  editing
RadEdit: stress-testing biomedical vision models via diffusion image editing
Fernando Pérez-García
Sam Bond-Taylor
Pedro P. Sanchez
B. V. Breugel
Daniel Coelho De Castro
...
M. Lungren
A. Nori
Javier Alvarez-Valle
Ozan Oktay
Maximilian Ilse
MedIm
30
6
0
20 Dec 2023
A Multi-Center Study on the Adaptability of a Shared Foundation Model
  for Electronic Health Records
A Multi-Center Study on the Adaptability of a Shared Foundation Model for Electronic Health Records
L. Guo
Jason Alan Fries
E. Steinberg
Scott L. Fleming
Keith Morse
Catherine Aftandilian
J. Posada
Nigam Shah
L. Sung
OOD
6
12
0
20 Nov 2023
MOTOR: A Time-To-Event Foundation Model For Structured Medical Records
MOTOR: A Time-To-Event Foundation Model For Structured Medical Records
E. Steinberg
Jason Alan Fries
Yizhe Xu
N. Shah
OOD
AI4TS
15
13
0
09 Jan 2023
MEDFAIR: Benchmarking Fairness for Medical Imaging
MEDFAIR: Benchmarking Fairness for Medical Imaging
Yongshuo Zong
Yongxin Yang
Timothy M. Hospedales
OOD
71
56
0
04 Oct 2022
Invariant and Transportable Representations for Anti-Causal Domain
  Shifts
Invariant and Transportable Representations for Anti-Causal Domain Shifts
Yibo Jiang
Victor Veitch
OOD
118
32
0
04 Jul 2022
Diagnosing failures of fairness transfer across distribution shift in
  real-world medical settings
Diagnosing failures of fairness transfer across distribution shift in real-world medical settings
Jessica Schrouff
Natalie Harris
Oluwasanmi Koyejo
Ibrahim M. Alabdulmohsin
Eva Schnider
...
Vivek Natarajan
Alan Karthikesalingam
Katherine A. Heller
Silvia Chiappa
Alexander DÁmour
OOD
51
53
0
02 Feb 2022
Learning Adversarially Fair and Transferable Representations
Learning Adversarially Fair and Transferable Representations
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
208
663
0
17 Feb 2018
1