ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.02165
  4. Cited By
Diffusion probabilistic models enhance variational autoencoder for
  crystal structure generative modeling

Diffusion probabilistic models enhance variational autoencoder for crystal structure generative modeling

4 August 2023
T. Pakornchote
Natthaphon Choomphon-anomakhun
Sorrjit Arrerut
C. Atthapak
S. Khamkaeo
Thiparat Chotibut
T. Bovornratanaraks
    DiffM
ArXivPDFHTML

Papers citing "Diffusion probabilistic models enhance variational autoencoder for crystal structure generative modeling"

5 / 5 papers shown
Title
Scalable Diffusion for Materials Generation
Scalable Diffusion for Materials Generation
Mengjiao Yang
KwangHwan Cho
Amil Merchant
Pieter Abbeel
Dale Schuurmans
Igor Mordatch
E. D. Cubuk
19
38
0
18 Oct 2023
Star-Shaped Denoising Diffusion Probabilistic Models
Star-Shaped Denoising Diffusion Probabilistic Models
Andrey Okhotin
Dmitry Molchanov
V. Arkhipkin
Grigory Bartosh
Viktor Ohanesian
Aibek Alanov
Dmitry Vetrov
DiffM
19
12
0
10 Feb 2023
Crystal Diffusion Variational Autoencoder for Periodic Material
  Generation
Crystal Diffusion Variational Autoencoder for Periodic Material Generation
Tian Xie
Xiang Fu
O. Ganea
Regina Barzilay
Tommi Jaakkola
DiffM
BDL
191
158
0
12 Oct 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
161
1,095
0
27 Apr 2021
Conditional molecular design with deep generative models
Conditional molecular design with deep generative models
Seokho Kang
Kyunghyun Cho
BDL
138
182
0
30 Apr 2018
1