Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2308.02165
Cited By
Diffusion probabilistic models enhance variational autoencoder for crystal structure generative modeling
4 August 2023
T. Pakornchote
Natthaphon Choomphon-anomakhun
Sorrjit Arrerut
C. Atthapak
S. Khamkaeo
Thiparat Chotibut
T. Bovornratanaraks
DiffM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Diffusion probabilistic models enhance variational autoencoder for crystal structure generative modeling"
5 / 5 papers shown
Title
Scalable Diffusion for Materials Generation
Mengjiao Yang
KwangHwan Cho
Amil Merchant
Pieter Abbeel
Dale Schuurmans
Igor Mordatch
E. D. Cubuk
19
38
0
18 Oct 2023
Star-Shaped Denoising Diffusion Probabilistic Models
Andrey Okhotin
Dmitry Molchanov
V. Arkhipkin
Grigory Bartosh
Viktor Ohanesian
Aibek Alanov
Dmitry Vetrov
DiffM
19
12
0
10 Feb 2023
Crystal Diffusion Variational Autoencoder for Periodic Material Generation
Tian Xie
Xiang Fu
O. Ganea
Regina Barzilay
Tommi Jaakkola
DiffM
BDL
191
158
0
12 Oct 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
161
1,095
0
27 Apr 2021
Conditional molecular design with deep generative models
Seokho Kang
Kyunghyun Cho
BDL
138
182
0
30 Apr 2018
1