Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2308.05732
Cited By
PDE-Refiner: Achieving Accurate Long Rollouts with Neural PDE Solvers
10 August 2023
Phillip Lippe
Bastiaan S. Veeling
P. Perdikaris
Richard E. Turner
Johannes Brandstetter
DiffM
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"PDE-Refiner: Achieving Accurate Long Rollouts with Neural PDE Solvers"
17 / 17 papers shown
Title
MALT Diffusion: Memory-Augmented Latent Transformers for Any-Length Video Generation
Sihyun Yu
Meera Hahn
Dan Kondratyuk
Jinwoo Shin
Agrim Gupta
José Lezama
Irfan Essa
David A. Ross
Jonathan Huang
DiffM
VGen
67
0
0
18 Feb 2025
NeuralDEM -- Real-time Simulation of Industrial Particulate Flows
Benedikt Alkin
Tobias Kronlachner
Samuele Papa
Stefan Pirker
Thomas Lichtenegger
Johannes Brandstetter
PINN
AI4CE
32
1
1
14 Nov 2024
Continuous Ensemble Weather Forecasting with Diffusion models
Martin Andrae
Tomas Landelius
Joel Oskarsson
Fredrik Lindsten
AI4Cl
27
2
0
07 Oct 2024
Text2PDE: Latent Diffusion Models for Accessible Physics Simulation
Anthony Y. Zhou
Zijie Li
Michael Schneier
John R Buchanan Jr
Amir Barati Farimani
AI4CE
DiffM
52
5
0
02 Oct 2024
Integrating Neural Operators with Diffusion Models Improves Spectral Representation in Turbulence Modeling
Vivek Oommen
Aniruddha Bora
Zhen Zhang
George Karniadakis
DiffM
45
13
0
13 Sep 2024
Differentiable programming across the PDE and Machine Learning barrier
N. Bouziani
David A. Ham
Ado Farsi
PINN
AI4CE
19
1
0
09 Sep 2024
Data-Driven Stochastic Closure Modeling via Conditional Diffusion Model and Neural Operator
Xinghao Dong
Chuanqi Chen
Jin-Long Wu
DiffM
AI4CE
41
5
0
06 Aug 2024
Active Learning for Neural PDE Solvers
Daniel Musekamp
Marimuthu Kalimuthu
David Holzmüller
Makoto Takamoto
Carlos Fernandez
AI4CE
41
4
0
02 Aug 2024
Universal Physics Transformers: A Framework For Efficiently Scaling Neural Operators
Benedikt Alkin
Andreas Fürst
Simon Schmid
Lukas Gruber
Markus Holzleitner
Johannes Brandstetter
PINN
AI4CE
27
8
0
19 Feb 2024
Closure Discovery for Coarse-Grained Partial Differential Equations Using Grid-based Reinforcement Learning
Jan-Philipp von Bassewitz
Sebastian Kaltenbach
P. Koumoutsakos
AI4CE
30
1
0
01 Feb 2024
Towards Multi-spatiotemporal-scale Generalized PDE Modeling
Jayesh K. Gupta
Johannes Brandstetter
AI4CE
53
117
0
30 Sep 2022
Clifford Neural Layers for PDE Modeling
Johannes Brandstetter
Rianne van den Berg
Max Welling
Jayesh K. Gupta
AI4CE
60
76
0
08 Sep 2022
On the difficulty of learning chaotic dynamics with RNNs
Jonas M. Mikhaeil
Zahra Monfared
Daniel Durstewitz
51
50
0
14 Oct 2021
Physics-based Deep Learning
Nils Thuerey
Philipp Holl
P. Holl
Patrick Schnell
Felix Trost
Kiwon Um
P. Schnell
F. Trost
PINN
AI4CE
48
89
0
11 Sep 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
197
2,254
0
18 Oct 2020
MetNet: A Neural Weather Model for Precipitation Forecasting
C. Sønderby
L. Espeholt
Jonathan Heek
Mostafa Dehghani
Avital Oliver
Tim Salimans
Shreya Agrawal
Jason Hickey
Nal Kalchbrenner
AI4Cl
209
242
0
24 Mar 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,635
0
05 Dec 2016
1