ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.07832
  4. Cited By
REFORMS: Reporting Standards for Machine Learning Based Science
v1v2 (latest)

REFORMS: Reporting Standards for Machine Learning Based Science

15 August 2023
Sayash Kapoor
Emily F. Cantrell
Kenny Peng
Thanh Hien Pham
C. Bail
Odd Erik Gundersen
Jake M. Hofman
Jessica Hullman
M. Lones
M. Malik
Priyanka Nanayakkara
R. Poldrack
Inioluwa Deborah Raji
Michael Roberts
Matthew J. Salganik
Marta Serra-Garcia
Brandon M Stewart
Gilles Vandewiele
Arvind Narayanan
ArXiv (abs)PDFHTML

Papers citing "REFORMS: Reporting Standards for Machine Learning Based Science"

11 / 11 papers shown
Title
Temporal Image Forensics: A Review and Critical Evaluation
Temporal Image Forensics: A Review and Critical Evaluation
Robert Jöchl
Andreas Uhl
104
0
0
09 Sep 2025
Review and Recommendations for using Artificial Intelligence in Intracoronary Optical Coherence Tomography Analysis
Review and Recommendations for using Artificial Intelligence in Intracoronary Optical Coherence Tomography Analysis
Xu Chen
Yuan Huang
Benn Jessney
Jason Sangha
Sophie Gu
Carola-Bibiane Schönlieb
Martin Bennett
M. Roberts
128
0
0
24 Jan 2025
Consent in Crisis: The Rapid Decline of the AI Data Commons
Consent in Crisis: The Rapid Decline of the AI Data Commons
Shayne Longpre
Robert Mahari
Ariel N. Lee
Campbell Lund
Hamidah Oderinwale
...
Hanlin Li
Daphne Ippolito
Sara Hooker
Jad Kabbara
Sandy Pentland
309
61
0
20 Jul 2024
Weak baselines and reporting biases lead to overoptimism in machine
  learning for fluid-related partial differential equations
Weak baselines and reporting biases lead to overoptimism in machine learning for fluid-related partial differential equations
N. McGreivy
Ammar Hakim
AI4CE
224
106
0
09 Jul 2024
Unraveling overoptimism and publication bias in ML-driven science
Unraveling overoptimism and publication bias in ML-driven sciencePatterns (Patterns), 2024
Pouria Saidi
Gautam Dasarathy
Visar Berisha
250
6
0
23 May 2024
From Model Performance to Claim: How a Change of Focus in Machine Learning Replicability Can Help Bridge the Responsibility Gap
From Model Performance to Claim: How a Change of Focus in Machine Learning Replicability Can Help Bridge the Responsibility Gap
Tianqi Kou
345
3
0
19 Apr 2024
Pre-registration for Predictive Modeling
Pre-registration for Predictive Modeling
Jake M. Hofman
Angelos Chatzimparmpas
Amit Sharma
Duncan J. Watts
Jessica Hullman
AI4CE
165
6
0
30 Nov 2023
The Data Provenance Initiative: A Large Scale Audit of Dataset Licensing
  & Attribution in AI
The Data Provenance Initiative: A Large Scale Audit of Dataset Licensing & Attribution in AI
Shayne Longpre
Robert Mahari
Anthony Chen
Naana Obeng-Marnu
Damien Sileo
...
K. Bollacker
Tongshuang Wu
Luis Villa
Sandy Pentland
Sara Hooker
198
82
0
25 Oct 2023
Constructing Impactful Machine Learning Research for Astronomy: Best
  Practices for Researchers and Reviewers
Constructing Impactful Machine Learning Research for Astronomy: Best Practices for Researchers and Reviewers
D. Huppenkothen
M. Ntampaka
M. Ho
M. Fouesneau
Brian D. Nord
...
Y.-S. Ting
G. V. D. Ven
S. Villar
V. A. Villar
E. Zinger
90
3
0
19 Oct 2023
Machine Psychology: Investigating Emergent Capabilities and Behavior in
  Large Language Models Using Psychological Methods
Machine Psychology: Investigating Emergent Capabilities and Behavior in Large Language Models Using Psychological Methods
Thilo Hagendorff
LLMAG
370
7
0
24 Mar 2023
How to avoid machine learning pitfalls: a guide for academic researchers
How to avoid machine learning pitfalls: a guide for academic researchersPatterns (Patterns), 2021
M. Lones
VLMFaMLOnRL
351
115
0
05 Aug 2021
1