ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.09142
  4. Cited By
Accurate machine learning force fields via experimental and simulation
  data fusion

Accurate machine learning force fields via experimental and simulation data fusion

17 August 2023
Sebastien Röcken
J. Zavadlav
    AI4CE
ArXivPDFHTML

Papers citing "Accurate machine learning force fields via experimental and simulation data fusion"

6 / 6 papers shown
Title
Enhancing the Efficiency of Complex Systems Crystal Structure Prediction by Active Learning Guided Machine Learning Potential
Enhancing the Efficiency of Complex Systems Crystal Structure Prediction by Active Learning Guided Machine Learning Potential
Jiaxiang Li
Junwei Feng
Jie Luo
Bowen Jiang
Xiangyu Zheng
...
Keith Butler
Hanyu Liu
Congwei Xie
Yu Xie
Yanming Ma
21
0
0
13 May 2025
chemtrain: Learning Deep Potential Models via Automatic Differentiation
  and Statistical Physics
chemtrain: Learning Deep Potential Models via Automatic Differentiation and Statistical Physics
Paul Fuchs
Stephan Thaler
Sebastien Röcken
J. Zavadlav
DiffM
61
6
0
28 Aug 2024
Predicting solvation free energies with an implicit solvent machine learning potential
Predicting solvation free energies with an implicit solvent machine learning potential
Sebastien Röcken
A. F. Burnet
J. Zavadlav
AI4Cl
AI4CE
63
3
0
31 May 2024
Single-model uncertainty quantification in neural network potentials
  does not consistently outperform model ensembles
Single-model uncertainty quantification in neural network potentials does not consistently outperform model ensembles
Aik Rui Tan
S. Urata
Samuel Goldman
Johannes C. B. Dietschreit
Rafael Gómez-Bombarelli
BDL
24
41
0
02 May 2023
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
192
1,232
0
08 Jan 2021
Differentiable Molecular Simulations for Control and Learning
Differentiable Molecular Simulations for Control and Learning
Wujie Wang
Simon Axelrod
Rafael Gómez-Bombarelli
AI4CE
93
49
0
27 Feb 2020
1