ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.03386
  4. Cited By
Community-Based Hierarchical Positive-Unlabeled (PU) Model Fusion for
  Chronic Disease Prediction

Community-Based Hierarchical Positive-Unlabeled (PU) Model Fusion for Chronic Disease Prediction

6 September 2023
Yang Wu
Xurui Li
Xuhong Zhang
Yangyang Kang
Changlong Sun
Xiaozhong Liu
ArXivPDFHTML

Papers citing "Community-Based Hierarchical Positive-Unlabeled (PU) Model Fusion for Chronic Disease Prediction"

3 / 3 papers shown
Title
ROSE: A Reward-Oriented Data Selection Framework for LLM Task-Specific
  Instruction Tuning
ROSE: A Reward-Oriented Data Selection Framework for LLM Task-Specific Instruction Tuning
Yang Wu
Huayi Zhang
Yizheng Jiao
Lin Ma
Xiaozhong Liu
Jinhong Yu
Dongyu Zhang
Dezhi Yu
Wei Xu
80
1
0
01 Dec 2024
Knowledge-Infused Legal Wisdom: Navigating LLM Consultation through the
  Lens of Diagnostics and Positive-Unlabeled Reinforcement Learning
Knowledge-Infused Legal Wisdom: Navigating LLM Consultation through the Lens of Diagnostics and Positive-Unlabeled Reinforcement Learning
Yang Wu
Chenghao Wang
Ece Gumusel
Xiaozhong Liu
ELM
AILaw
40
4
0
05 Jun 2024
MNIST-NET10: A heterogeneous deep networks fusion based on the degree of
  certainty to reach 0.1 error rate. Ensembles overview and proposal
MNIST-NET10: A heterogeneous deep networks fusion based on the degree of certainty to reach 0.1 error rate. Ensembles overview and proposal
S. Tabik
R. F. Alvear-Sandoval
María M. Ruiz
J. Sancho-Gómez
A. Figueiras-Vidal
Francisco Herrera
56
33
0
30 Jan 2020
1