ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.05853
  4. Cited By
ChemSpaceAL: An Efficient Active Learning Methodology Applied to
  Protein-Specific Molecular Generation

ChemSpaceAL: An Efficient Active Learning Methodology Applied to Protein-Specific Molecular Generation

11 September 2023
Gregory W. Kyro
Anton Morgunov
Rafael I. Brent
Victor S. Batista
ArXivPDFHTML

Papers citing "ChemSpaceAL: An Efficient Active Learning Methodology Applied to Protein-Specific Molecular Generation"

11 / 11 papers shown
Title
Generative Design of Functional Metal Complexes Utilizing the Internal
  Knowledge of Large Language Models
Generative Design of Functional Metal Complexes Utilizing the Internal Knowledge of Large Language Models
Jieyu Lu
Zhangde Song
Qiyuan Zhao
Yuanqi Du
Yirui Cao
Haojun Jia
Chenru Duan
AI4CE
34
2
0
21 Oct 2024
Geometry Informed Tokenization of Molecules for Language Model
  Generation
Geometry Informed Tokenization of Molecules for Language Model Generation
Xiner Li
Limei Wang
Youzhi Luo
Carl N. Edwards
Shurui Gui
Yuchao Lin
Heng Ji
Shuiwang Ji
29
5
0
19 Aug 2024
CardioGenAI: A Machine Learning-Based Framework for Re-Engineering Drugs
  for Reduced hERG Liability
CardioGenAI: A Machine Learning-Based Framework for Re-Engineering Drugs for Reduced hERG Liability
Gregory W. Kyro
Matthew T. Martin
Eric D. Watt
Victor S. Batista
28
2
0
12 Mar 2024
Beam Enumeration: Probabilistic Explainability For Sample Efficient
  Self-conditioned Molecular Design
Beam Enumeration: Probabilistic Explainability For Sample Efficient Self-conditioned Molecular Design
Jeff Guo
P. Schwaller
11
6
0
25 Sep 2023
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking
Gabriele Corso
Hannes Stärk
Bowen Jing
Regina Barzilay
Tommi Jaakkola
DiffM
130
399
0
04 Oct 2022
Probabilistic Generative Transformer Language models for Generative
  Design of Molecules
Probabilistic Generative Transformer Language models for Generative Design of Molecules
Lai Wei
Nihang Fu
Yuqi Song
Qian Wang
Jianjun Hu
AI4CE
26
11
0
20 Sep 2022
3DMolNet: A Generative Network for Molecular Structures
3DMolNet: A Generative Network for Molecular Structures
V. Nesterov
Mario Wieser
Volker Roth
AI4CE
154
33
0
08 Oct 2020
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation
  Models
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
Daniil Polykovskiy
Alexander Zhebrak
Benjamín Sánchez-Lengeling
Sergey Golovanov
Oktai Tatanov
...
Simon Johansson
Hongming Chen
Sergey I. Nikolenko
Alán Aspuru-Guzik
Alex Zhavoronkov
ELM
167
628
0
29 Nov 2018
Graph Convolutional Policy Network for Goal-Directed Molecular Graph
  Generation
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation
Jiaxuan You
Bowen Liu
Rex Ying
Vijay S. Pande
J. Leskovec
GNN
184
878
0
07 Jun 2018
Conditional molecular design with deep generative models
Conditional molecular design with deep generative models
Seokho Kang
Kyunghyun Cho
BDL
147
182
0
30 Apr 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
211
1,329
0
12 Feb 2018
1