ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.06131
  4. Cited By
Annotating Data for Fine-Tuning a Neural Ranker? Current Active Learning
  Strategies are not Better than Random Selection

Annotating Data for Fine-Tuning a Neural Ranker? Current Active Learning Strategies are not Better than Random Selection

12 September 2023
Sophia Althammer
Guido Zuccon
Sebastian Hofstatter
Suzan Verberne
Allan Hanbury
ArXivPDFHTML

Papers citing "Annotating Data for Fine-Tuning a Neural Ranker? Current Active Learning Strategies are not Better than Random Selection"

11 / 11 papers shown
Title
GCI-ViTAL: Gradual Confidence Improvement with Vision Transformers for
  Active Learning on Label Noise
GCI-ViTAL: Gradual Confidence Improvement with Vision Transformers for Active Learning on Label Noise
Moseli Motsóehli
Kyungim Baek
26
1
0
08 Nov 2024
Zero-Shot Dense Retrieval with Momentum Adversarial Domain Invariant
  Representations
Zero-Shot Dense Retrieval with Momentum Adversarial Domain Invariant Representations
Ji Xin
Chenyan Xiong
A. Srinivasan
Ankita Sharma
Damien Jose
Paul N. Bennett
VLM
78
41
0
14 Oct 2021
SPLADE v2: Sparse Lexical and Expansion Model for Information Retrieval
SPLADE v2: Sparse Lexical and Expansion Model for Information Retrieval
Thibault Formal
Carlos Lassance
Benjamin Piwowarski
S. Clinchant
194
186
0
21 Sep 2021
Goldilocks: Just-Right Tuning of BERT for Technology-Assisted Review
Goldilocks: Just-Right Tuning of BERT for Technology-Assisted Review
Eugene Yang
Sean MacAvaney
D. Lewis
O. Frieder
82
28
0
03 May 2021
BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information
  Retrieval Models
BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models
Nandan Thakur
Nils Reimers
Andreas Rucklé
Abhishek Srivastava
Iryna Gurevych
VLM
231
966
0
17 Apr 2021
Overview of the TREC 2020 deep learning track
Overview of the TREC 2020 deep learning track
Nick Craswell
Bhaskar Mitra
Emine Yilmaz
Daniel Fernando Campos
54
368
0
15 Feb 2021
Cold-start Active Learning through Self-supervised Language Modeling
Cold-start Active Learning through Self-supervised Language Modeling
Michelle Yuan
Hsuan-Tien Lin
Jordan L. Boyd-Graber
106
180
0
19 Oct 2020
Augmented SBERT: Data Augmentation Method for Improving Bi-Encoders for
  Pairwise Sentence Scoring Tasks
Augmented SBERT: Data Augmentation Method for Improving Bi-Encoders for Pairwise Sentence Scoring Tasks
Nandan Thakur
Nils Reimers
Johannes Daxenberger
Iryna Gurevych
202
241
0
16 Oct 2020
Pretrained Transformers for Text Ranking: BERT and Beyond
Pretrained Transformers for Text Ranking: BERT and Beyond
Jimmy J. Lin
Rodrigo Nogueira
Andrew Yates
VLM
219
608
0
13 Oct 2020
Overview of the TREC 2019 deep learning track
Overview of the TREC 2019 deep learning track
Nick Craswell
Bhaskar Mitra
Emine Yilmaz
Daniel Fernando Campos
E. Voorhees
180
465
0
17 Mar 2020
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
279
9,136
0
06 Jun 2015
1