ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.08600
  4. Cited By
Sparse Autoencoders Find Highly Interpretable Features in Language
  Models

Sparse Autoencoders Find Highly Interpretable Features in Language Models

15 September 2023
Hoagy Cunningham
Aidan Ewart
Logan Riggs
R. Huben
Lee Sharkey
    MILM
ArXivPDFHTML

Papers citing "Sparse Autoencoders Find Highly Interpretable Features in Language Models"

7 / 57 papers shown
Title
Black-Box Access is Insufficient for Rigorous AI Audits
Black-Box Access is Insufficient for Rigorous AI Audits
Stephen Casper
Carson Ezell
Charlotte Siegmann
Noam Kolt
Taylor Lynn Curtis
...
Michael Gerovitch
David Bau
Max Tegmark
David M. Krueger
Dylan Hadfield-Menell
AAML
8
75
0
25 Jan 2024
Forbidden Facts: An Investigation of Competing Objectives in Llama-2
Forbidden Facts: An Investigation of Competing Objectives in Llama-2
Tony T. Wang
Miles Wang
Kaivu Hariharan
Nir Shavit
8
2
0
14 Dec 2023
Towards Best Practices of Activation Patching in Language Models:
  Metrics and Methods
Towards Best Practices of Activation Patching in Language Models: Metrics and Methods
Fred Zhang
Neel Nanda
LLMSV
10
95
0
27 Sep 2023
Interpretability in the Wild: a Circuit for Indirect Object
  Identification in GPT-2 small
Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 small
Kevin Wang
Alexandre Variengien
Arthur Conmy
Buck Shlegeris
Jacob Steinhardt
207
486
0
01 Nov 2022
Toy Models of Superposition
Toy Models of Superposition
Nelson Elhage
Tristan Hume
Catherine Olsson
Nicholas Schiefer
T. Henighan
...
Sam McCandlish
Jared Kaplan
Dario Amodei
Martin Wattenberg
C. Olah
AAML
MILM
117
314
0
21 Sep 2022
Linear Adversarial Concept Erasure
Linear Adversarial Concept Erasure
Shauli Ravfogel
Michael Twiton
Yoav Goldberg
Ryan Cotterell
KELM
62
56
0
28 Jan 2022
The Pile: An 800GB Dataset of Diverse Text for Language Modeling
The Pile: An 800GB Dataset of Diverse Text for Language Modeling
Leo Gao
Stella Biderman
Sid Black
Laurence Golding
Travis Hoppe
...
Horace He
Anish Thite
Noa Nabeshima
Shawn Presser
Connor Leahy
AIMat
236
1,508
0
31 Dec 2020
Previous
12