ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.13038
  4. Cited By
Privacy Assessment on Reconstructed Images: Are Existing Evaluation
  Metrics Faithful to Human Perception?

Privacy Assessment on Reconstructed Images: Are Existing Evaluation Metrics Faithful to Human Perception?

22 September 2023
Xiaoxiao Sun
Nidham Gazagnadou
Vivek Sharma
Lingjuan Lyu
Hongdong Li
Liang Zheng
ArXivPDFHTML

Papers citing "Privacy Assessment on Reconstructed Images: Are Existing Evaluation Metrics Faithful to Human Perception?"

10 / 10 papers shown
Title
Enabling Privacy-Aware AI-Based Ergonomic Analysis
Enabling Privacy-Aware AI-Based Ergonomic Analysis
Sander De Coninck
Emilio Gamba
Bart Van Doninck
Abdellatif Bey-Temsamani
Sam Leroux
Pieter Simoens
22
0
0
12 May 2025
Quantifying Privacy Leakage in Split Inference via Fisher-Approximated Shannon Information Analysis
Quantifying Privacy Leakage in Split Inference via Fisher-Approximated Shannon Information Analysis
Ruijun Deng
Zhihui Lu
Qiang Duan
FedML
36
0
0
14 Apr 2025
Just a Simple Transformation is Enough for Data Protection in Vertical
  Federated Learning
Just a Simple Transformation is Enough for Data Protection in Vertical Federated Learning
Andrei Semenov
Philip Zmushko
Alexander Pichugin
Aleksandr Beznosikov
79
0
0
16 Dec 2024
$S^2$NeRF: Privacy-preserving Training Framework for NeRF
S2S^2S2NeRF: Privacy-preserving Training Framework for NeRF
Bokang Zhang
Yanglin Zhang
Zhikun Zhang
Jinglan Yang
Lingying Huang
Junfeng Wu
38
2
0
03 Sep 2024
Bayes' capacity as a measure for reconstruction attacks in federated
  learning
Bayes' capacity as a measure for reconstruction attacks in federated learning
Sayan Biswas
Mark Dras
Pedro Faustini
Natasha Fernandes
Annabelle McIver
C. Palamidessi
Parastoo Sadeghi
FedML
13
0
0
19 Jun 2024
When Foundation Model Meets Federated Learning: Motivations, Challenges, and Future Directions
When Foundation Model Meets Federated Learning: Motivations, Challenges, and Future Directions
Weiming Zhuang
Chen Chen
Lingjuan Lyu
C. L. P. Chen
Yaochu Jin
Lingjuan Lyu
AIFin
AI4CE
86
85
0
27 Jun 2023
A Pathway Towards Responsible AI Generated Content
A Pathway Towards Responsible AI Generated Content
Chen Chen
Jie Fu
Lingjuan Lyu
47
71
0
02 Mar 2023
Training language models to follow instructions with human feedback
Training language models to follow instructions with human feedback
Long Ouyang
Jeff Wu
Xu Jiang
Diogo Almeida
Carroll L. Wainwright
...
Amanda Askell
Peter Welinder
Paul Christiano
Jan Leike
Ryan J. Lowe
OSLM
ALM
303
11,881
0
04 Mar 2022
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
PINN
3DV
247
36,356
0
25 Aug 2016
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
282
39,190
0
01 Sep 2014
1