ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.13593
  4. Cited By
Self-Tuning Hamiltonian Monte Carlo for Accelerated Sampling

Self-Tuning Hamiltonian Monte Carlo for Accelerated Sampling

24 September 2023
H. Christiansen
Federico Errica
Francesco Alesiani
ArXivPDFHTML

Papers citing "Self-Tuning Hamiltonian Monte Carlo for Accelerated Sampling"

5 / 5 papers shown
Title
Fast, Modular, and Differentiable Framework for Machine Learning-Enhanced Molecular Simulations
Fast, Modular, and Differentiable Framework for Machine Learning-Enhanced Molecular Simulations
H. Christiansen
Takashi Maruyama
Federico Errica
Viktor Zaverkin
M. Takamoto
Francesco Alesiani
73
0
0
26 Mar 2025
Reinforcement Learning for Adaptive MCMC
Reinforcement Learning for Adaptive MCMC
Congye Wang
Wilson Chen
Heishiro Kanagawa
Chris J. Oates
BDL
19
2
0
22 May 2024
Uncertainty-biased molecular dynamics for learning uniformly accurate
  interatomic potentials
Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic potentials
Viktor Zaverkin
David Holzmüller
Henrik Christiansen
Federico Errica
Francesco Alesiani
Makoto Takamoto
Mathias Niepert
Johannes Kastner
AI4CE
9
13
0
03 Dec 2023
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
172
1,100
0
27 Apr 2021
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
132
3,263
0
09 Jun 2012
1