ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.13598
  4. Cited By
On the Posterior Distribution in Denoising: Application to Uncertainty
  Quantification

On the Posterior Distribution in Denoising: Application to Uncertainty Quantification

24 September 2023
Hila Manor
T. Michaeli
    UQCV
ArXivPDFHTML

Papers citing "On the Posterior Distribution in Denoising: Application to Uncertainty Quantification"

15 / 15 papers shown
Title
Uncertainty Quantification for Machine Learning in Healthcare: A Survey
Uncertainty Quantification for Machine Learning in Healthcare: A Survey
L. J. L. Lopez
Shaza Elsharief
Dhiyaa Al Jorf
Firas Darwish
Congbo Ma
Farah E. Shamout
26
0
0
04 May 2025
InvFussion: Bridging Supervised and Zero-shot Diffusion for Inverse Problems
InvFussion: Bridging Supervised and Zero-shot Diffusion for Inverse Problems
Noam Elata
Hyungjin Chung
Jong Chul Ye
T. Michaeli
Michael Elad
DiffM
35
0
0
02 Apr 2025
A Simple Combination of Diffusion Models for Better Quality Trade-Offs in Image Denoising
A Simple Combination of Diffusion Models for Better Quality Trade-Offs in Image Denoising
Jonas Dornbusch
Emanuel Pfarr
Florin-Alexandru Vasluianu
Frank Werner
Radu Timofte
DiffM
55
0
0
18 Mar 2025
Conditional Distribution Quantization in Machine Learning
Conditional Distribution Quantization in Machine Learning
Blaise Delattre
Sylvain Delattre
Alexandre Verine
Alexandre Allauzen
45
0
0
11 Feb 2025
Understanding Generalizability of Diffusion Models Requires Rethinking
  the Hidden Gaussian Structure
Understanding Generalizability of Diffusion Models Requires Rethinking the Hidden Gaussian Structure
Xiang Li
Yixiang Dai
Qing Qu
DiffM
AI4CE
23
5
0
31 Oct 2024
Shallow Diffuse: Robust and Invisible Watermarking through
  Low-Dimensional Subspaces in Diffusion Models
Shallow Diffuse: Robust and Invisible Watermarking through Low-Dimensional Subspaces in Diffusion Models
Wenda Li
Huijie Zhang
Qing Qu
WIGM
41
0
0
28 Oct 2024
Free Hunch: Denoiser Covariance Estimation for Diffusion Models Without Extra Costs
Free Hunch: Denoiser Covariance Estimation for Diffusion Models Without Extra Costs
Severi Rissanen
Markus Heinonen
Arno Solin
DiffM
42
0
0
15 Oct 2024
PSC: Posterior Sampling-Based Compression
PSC: Posterior Sampling-Based Compression
Noam Elata
T. Michaeli
Michael Elad
DiffM
36
0
0
13 Jul 2024
Hierarchical Uncertainty Exploration via Feedforward Posterior Trees
Hierarchical Uncertainty Exploration via Feedforward Posterior Trees
E. Nehme
Rotem Mulayoff
T. Michaeli
UQCV
29
2
0
24 May 2024
Zero-Shot Unsupervised and Text-Based Audio Editing Using DDPM Inversion
Zero-Shot Unsupervised and Text-Based Audio Editing Using DDPM Inversion
Hila Manor
T. Michaeli
DiffM
17
25
0
15 Feb 2024
Uncertainty Visualization via Low-Dimensional Posterior Projections
Uncertainty Visualization via Low-Dimensional Posterior Projections
Omer Yair
E. Nehme
T. Michaeli
UQCV
19
2
0
12 Dec 2023
Uncertainty Quantification via Neural Posterior Principal Components
Uncertainty Quantification via Neural Posterior Principal Components
E. Nehme
Omer Yair
T. Michaeli
UQCV
13
6
0
27 Sep 2023
Label-Efficient Semantic Segmentation with Diffusion Models
Label-Efficient Semantic Segmentation with Diffusion Models
Dmitry Baranchuk
Ivan Rubachev
A. Voynov
Valentin Khrulkov
Artem Babenko
DiffM
VLM
187
508
0
06 Dec 2021
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
262
10,183
0
12 Dec 2018
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,042
0
06 Jun 2015
1