ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.14531
  4. Cited By
Pixel-Grounded Prototypical Part Networks

Pixel-Grounded Prototypical Part Networks

25 September 2023
Zachariah Carmichael
Suhas Lohit
A. Cherian
Michael J. Jones
Walter J. Scheirer
ArXivPDFHTML

Papers citing "Pixel-Grounded Prototypical Part Networks"

8 / 8 papers shown
Title
Mixture of Gaussian-distributed Prototypes with Generative Modelling for Interpretable and Trustworthy Image Recognition
Mixture of Gaussian-distributed Prototypes with Generative Modelling for Interpretable and Trustworthy Image Recognition
Chong Wang
Yuanhong Chen
Fengbei Liu
Yuyuan Liu
Davis J. McCarthy
Helen Frazer
Gustavo Carneiro
16
1
0
30 Nov 2023
Unfooling Perturbation-Based Post Hoc Explainers
Unfooling Perturbation-Based Post Hoc Explainers
Zachariah Carmichael
Walter J. Scheirer
AAML
45
14
0
29 May 2022
The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
Satyapriya Krishna
Tessa Han
Alex Gu
Steven Wu
S. Jabbari
Himabindu Lakkaraju
166
183
0
03 Feb 2022
HIVE: Evaluating the Human Interpretability of Visual Explanations
HIVE: Evaluating the Human Interpretability of Visual Explanations
Sunnie S. Y. Kim
Nicole Meister
V. V. Ramaswamy
Ruth C. Fong
Olga Russakovsky
58
112
0
06 Dec 2021
Interpretable Image Classification with Differentiable Prototypes
  Assignment
Interpretable Image Classification with Differentiable Prototypes Assignment
Dawid Rymarczyk
Lukasz Struski
Michal Górszczak
K. Lewandowska
Jacek Tabor
Bartosz Zieliñski
31
97
0
06 Dec 2021
How can I choose an explainer? An Application-grounded Evaluation of
  Post-hoc Explanations
How can I choose an explainer? An Application-grounded Evaluation of Post-hoc Explanations
Sérgio Jesus
Catarina Belém
Vladimir Balayan
João Bento
Pedro Saleiro
P. Bizarro
João Gama
123
119
0
21 Jan 2021
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
225
3,658
0
28 Feb 2017
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
PINN
3DV
244
35,884
0
25 Aug 2016
1