ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.15533
  4. Cited By
Uncertainty Quantification via Neural Posterior Principal Components

Uncertainty Quantification via Neural Posterior Principal Components

27 September 2023
E. Nehme
Omer Yair
T. Michaeli
    UQCV
ArXivPDFHTML

Papers citing "Uncertainty Quantification via Neural Posterior Principal Components"

14 / 14 papers shown
Title
Uncertainty Quantification for Machine Learning in Healthcare: A Survey
Uncertainty Quantification for Machine Learning in Healthcare: A Survey
L. J. L. Lopez
Shaza Elsharief
Dhiyaa Al Jorf
Firas Darwish
Congbo Ma
Farah E. Shamout
23
0
0
04 May 2025
Hierarchical Uncertainty Exploration via Feedforward Posterior Trees
Hierarchical Uncertainty Exploration via Feedforward Posterior Trees
E. Nehme
Rotem Mulayoff
T. Michaeli
UQCV
29
2
0
24 May 2024
Uncertainty Visualization via Low-Dimensional Posterior Projections
Uncertainty Visualization via Low-Dimensional Posterior Projections
Omer Yair
E. Nehme
T. Michaeli
UQCV
19
2
0
12 Dec 2023
Score-Based Diffusion Models as Principled Priors for Inverse Imaging
Score-Based Diffusion Models as Principled Priors for Inverse Imaging
Berthy T. Feng
Jamie Smith
Michael Rubinstein
Huiwen Chang
Katherine L. Bouman
William T. Freeman
DiffM
74
85
0
23 Apr 2023
GibbsDDRM: A Partially Collapsed Gibbs Sampler for Solving Blind Inverse
  Problems with Denoising Diffusion Restoration
GibbsDDRM: A Partially Collapsed Gibbs Sampler for Solving Blind Inverse Problems with Denoising Diffusion Restoration
Naoki Murata
Koichi Saito
Chieh-Hsin Lai
Yuhta Takida
Toshimitsu Uesaka
Yuki Mitsufuji
Stefano Ermon
DiffM
56
48
0
30 Jan 2023
Denoising Diffusion Restoration Models
Denoising Diffusion Restoration Models
Bahjat Kawar
Michael Elad
Stefano Ermon
Jiaming Song
DiffM
204
770
0
27 Jan 2022
RePaint: Inpainting using Denoising Diffusion Probabilistic Models
RePaint: Inpainting using Denoising Diffusion Probabilistic Models
Andreas Lugmayr
Martin Danelljan
Andrés Romero
F. I. F. Richard Yu
Radu Timofte
Luc Van Gool
DiffM
203
1,330
0
24 Jan 2022
Palette: Image-to-Image Diffusion Models
Palette: Image-to-Image Diffusion Models
Chitwan Saharia
William Chan
Huiwen Chang
Chris A. Lee
Jonathan Ho
Tim Salimans
David J. Fleet
Mohammad Norouzi
DiffM
VLM
325
1,570
0
10 Nov 2021
Distribution-Free, Risk-Controlling Prediction Sets
Distribution-Free, Risk-Controlling Prediction Sets
Stephen Bates
Anastasios Nikolas Angelopoulos
Lihua Lei
Jitendra Malik
Michael I. Jordan
OOD
173
184
0
07 Jan 2021
Knowledge Distillation in Iterative Generative Models for Improved
  Sampling Speed
Knowledge Distillation in Iterative Generative Models for Improved Sampling Speed
Eric Luhman
Troy Luhman
DiffM
184
256
0
07 Jan 2021
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
262
10,183
0
12 Dec 2018
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,635
0
05 Dec 2016
Image-to-Image Translation with Conditional Adversarial Networks
Image-to-Image Translation with Conditional Adversarial Networks
Phillip Isola
Jun-Yan Zhu
Tinghui Zhou
Alexei A. Efros
SSeg
212
19,191
0
21 Nov 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,042
0
06 Jun 2015
1