Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2309.17337
Cited By
Toward Operationalizing Pipeline-aware ML Fairness: A Research Agenda for Developing Practical Guidelines and Tools
29 September 2023
Maximilian Schambach
Rakshit Naidu
Rayid Ghani
Kit T. Rodolfa
Daniel E. Ho
Hoda Heidari
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Toward Operationalizing Pipeline-aware ML Fairness: A Research Agenda for Developing Practical Guidelines and Tools"
16 / 16 papers shown
Title
Addressing Discretization-Induced Bias in Demographic Prediction
Evan Dong
Aaron Schein
Yixin Wang
Nikhil Garg
27
3
0
27 May 2024
Fast online ranking with fairness of exposure
Nicolas Usunier
Virginie Do
Elvis Dohmatob
24
18
0
13 Sep 2022
It's Not Fairness, and It's Not Fair: The Failure of Distributional Equality and the Promise of Relational Equality in Complete-Information Hiring Games
Benjamin Fish
Luke Stark
FaML
14
8
0
12 Sep 2022
Fair Representation Learning through Implicit Path Alignment
Changjian Shui
Qi Chen
Jiaqi Li
Boyu Wang
Christian Gagné
36
27
0
26 May 2022
Adaptive Sampling Strategies to Construct Equitable Training Datasets
William Cai
R. Encarnación
Bobbie Chern
S. Corbett-Davies
Miranda Bogen
Stevie Bergman
Sharad Goel
77
29
0
31 Jan 2022
Controlling Directions Orthogonal to a Classifier
Yilun Xu
Hao He
T. Shen
Tommi Jaakkola
56
19
0
27 Jan 2022
Can Information Flows Suggest Targets for Interventions in Neural Circuits?
Praveen Venkatesh
Sanghamitra Dutta
Neil Mehta
P. Grover
AAML
24
8
0
09 Nov 2021
The Rich Get Richer: Disparate Impact of Semi-Supervised Learning
Zhaowei Zhu
Tianyi Luo
Yang Liu
148
39
0
12 Oct 2021
Mitigating Racial Biases in Toxic Language Detection with an Equity-Based Ensemble Framework
Matan Halevy
Camille Harris
A. Bruckman
Diyi Yang
A. Howard
34
35
0
27 Sep 2021
Robin Hood and Matthew Effects: Differential Privacy Has Disparate Impact on Synthetic Data
Georgi Ganev
Bristena Oprisanu
Emiliano De Cristofaro
29
57
0
23 Sep 2021
Adaptive Sampling for Minimax Fair Classification
S. Shekhar
Greg Fields
Mohammad Ghavamzadeh
T. Javidi
FaML
27
36
0
01 Mar 2021
Evaluating Fairness of Machine Learning Models Under Uncertain and Incomplete Information
Pranjal Awasthi
Alex Beutel
Matthaeus Kleindessner
Jamie Morgenstern
Xuezhi Wang
FaML
49
55
0
16 Feb 2021
Towards Fair Deep Anomaly Detection
Hongjing Zhang
Ian Davidson
FaML
47
38
0
29 Dec 2020
Can I Trust My Fairness Metric? Assessing Fairness with Unlabeled Data and Bayesian Inference
Disi Ji
Padhraic Smyth
M. Steyvers
34
43
0
19 Oct 2020
Improving fairness in machine learning systems: What do industry practitioners need?
Kenneth Holstein
Jennifer Wortman Vaughan
Hal Daumé
Miroslav Dudík
Hanna M. Wallach
FaML
HAI
192
730
0
13 Dec 2018
Learning Adversarially Fair and Transferable Representations
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
210
663
0
17 Feb 2018
1