ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.00796
  4. Cited By
SIP: Injecting a Structural Inductive Bias into a Seq2Seq Model by
  Simulation

SIP: Injecting a Structural Inductive Bias into a Seq2Seq Model by Simulation

1 October 2023
Matthias Lindemann
Alexander Koller
Ivan Titov
    AI4CE
ArXivPDFHTML

Papers citing "SIP: Injecting a Structural Inductive Bias into a Seq2Seq Model by Simulation"

7 / 7 papers shown
Title
Strengthening Structural Inductive Biases by Pre-training to Perform
  Syntactic Transformations
Strengthening Structural Inductive Biases by Pre-training to Perform Syntactic Transformations
Matthias Lindemann
Alexander Koller
Ivan Titov
AI4CE
NAI
25
2
0
05 Jul 2024
Emergent World Models and Latent Variable Estimation in Chess-Playing
  Language Models
Emergent World Models and Latent Variable Estimation in Chess-Playing Language Models
Adam Karvonen
27
19
0
21 Mar 2024
Neural Networks and the Chomsky Hierarchy
Neural Networks and the Chomsky Hierarchy
Grégoire Delétang
Anian Ruoss
Jordi Grau-Moya
Tim Genewein
L. Wenliang
...
Chris Cundy
Marcus Hutter
Shane Legg
Joel Veness
Pedro A. Ortega
UQCV
96
129
0
05 Jul 2022
On Compositional Generalization of Neural Machine Translation
On Compositional Generalization of Neural Machine Translation
Yafu Li
Yongjing Yin
Yulong Chen
Yue Zhang
148
44
0
31 May 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
280
3,843
0
18 Apr 2021
LIME: Learning Inductive Bias for Primitives of Mathematical Reasoning
LIME: Learning Inductive Bias for Primitives of Mathematical Reasoning
Yuhuai Wu
M. Rabe
Wenda Li
Jimmy Ba
Roger C. Grosse
Christian Szegedy
AIMat
LRM
61
51
0
15 Jan 2021
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
275
11,677
0
09 Mar 2017
1