ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.02532
  4. Cited By
ShaSTA-Fuse: Camera-LiDAR Sensor Fusion to Model Shape and
  Spatio-Temporal Affinities for 3D Multi-Object Tracking

ShaSTA-Fuse: Camera-LiDAR Sensor Fusion to Model Shape and Spatio-Temporal Affinities for 3D Multi-Object Tracking

4 October 2023
Tara Sadjadpour
Rares Ambrus
Jeannette Bohg
    VOT
ArXivPDFHTML

Papers citing "ShaSTA-Fuse: Camera-LiDAR Sensor Fusion to Model Shape and Spatio-Temporal Affinities for 3D Multi-Object Tracking"

4 / 4 papers shown
Title
Multimodal Virtual Point 3D Detection
Multimodal Virtual Point 3D Detection
Tianwei Yin
Xingyi Zhou
Philipp Krahenbuhl
3DPC
146
245
0
12 Nov 2021
Object DGCNN: 3D Object Detection using Dynamic Graphs
Object DGCNN: 3D Object Detection using Dynamic Graphs
Yue Wang
Justin Solomon
3DPC
143
103
0
13 Oct 2021
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
222
14,047
0
02 Dec 2016
Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient
  Convolutional Neural Networks
Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks
Martin Engelcke
Dushyant Rao
Dominic Zeng Wang
Chi Hay Tong
Ingmar Posner
3DPC
190
520
0
21 Sep 2016
1