Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2310.02994
Cited By
Multiple Physics Pretraining for Physical Surrogate Models
4 October 2023
Michael McCabe
Bruno Régaldo-Saint Blancard
Liam Parker
Ruben Ohana
M. Cranmer
Alberto Bietti
Michael Eickenberg
Siavash Golkar
G. Krawezik
Francois Lanusse
Mariel Pettee
Tiberiu Teşileanu
Kyunghyun Cho
Shirley Ho
PINN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Multiple Physics Pretraining for Physical Surrogate Models"
16 / 16 papers shown
Title
DISCO: learning to DISCover an evolution Operator for multi-physics-agnostic prediction
Rudy Morel
Jiequn Han
Edouard Oyallon
AI4CE
56
0
0
28 Apr 2025
Particle Trajectory Representation Learning with Masked Point Modeling
Sam Young
Yeon-jae Jwa
Kazuhiro Terao
3DPC
69
1
0
04 Feb 2025
The Well: a Large-Scale Collection of Diverse Physics Simulations for Machine Learning
Ruben Ohana
Michael McCabe
Lucas Meyer
Rudy Morel
Fruzsina J. Agocs
...
François Rozet
Liam Parker
M. Cranmer
S. Ho
Shirley Ho
PINN
AI4CE
72
7
1
30 Nov 2024
NeuralDEM -- Real-time Simulation of Industrial Particulate Flows
Benedikt Alkin
Tobias Kronlachner
Samuele Papa
Stefan Pirker
Thomas Lichtenegger
Johannes Brandstetter
PINN
AI4CE
54
1
1
14 Nov 2024
Zebra: In-Context and Generative Pretraining for Solving Parametric PDEs
Louis Serrano
Armand K. Koupai
Thomas X. Wang
Pierre Erbacher
Patrick Gallinari
AI4CE
35
3
0
04 Oct 2024
PROSE-FD: A Multimodal PDE Foundation Model for Learning Multiple Operators for Forecasting Fluid Dynamics
Yuxuan Liu
Jingmin Sun
Xinjie He
Griffin Pinney
Zecheng Zhang
Hayden Schaeffer
AI4CE
43
6
0
15 Sep 2024
Strategies for Pretraining Neural Operators
Anthony Y. Zhou
Cooper Lorsung
AmirPouya Hemmasian
Amir Barati Farimani
AI4CE
39
5
0
12 Jun 2024
DPOT: Auto-Regressive Denoising Operator Transformer for Large-Scale PDE Pre-Training
Zhongkai Hao
Chang Su
Songming Liu
Julius Berner
Chengyang Ying
Hang Su
A. Anandkumar
Jian Song
Jun Zhu
AI4TS
AI4CE
26
22
0
06 Mar 2024
Universal Physics Transformers: A Framework For Efficiently Scaling Neural Operators
Benedikt Alkin
Andreas Fürst
Simon Schmid
Lukas Gruber
Markus Holzleitner
Johannes Brandstetter
PINN
AI4CE
45
8
0
19 Feb 2024
Learning Neural PDE Solvers with Parameter-Guided Channel Attention
M. Takamoto
Francesco Alesiani
Mathias Niepert
53
20
0
27 Apr 2023
Towards Multi-spatiotemporal-scale Generalized PDE Modeling
Jayesh K. Gupta
Johannes Brandstetter
AI4CE
55
118
0
30 Sep 2022
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
305
7,443
0
11 Nov 2021
Mosaic Flows: A Transferable Deep Learning Framework for Solving PDEs on Unseen Domains
Hengjie Wang
R. Planas
Aparna Chandramowlishwaran
Ramin Bostanabad
AI4CE
50
61
0
22 Apr 2021
Is Space-Time Attention All You Need for Video Understanding?
Gedas Bertasius
Heng Wang
Lorenzo Torresani
ViT
280
1,982
0
09 Feb 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
220
2,287
0
18 Oct 2020
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
246
4,489
0
23 Jan 2020
1