ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.03054
  4. Cited By
Posterior Sampling Based on Gradient Flows of the MMD with Negative
  Distance Kernel

Posterior Sampling Based on Gradient Flows of the MMD with Negative Distance Kernel

4 October 2023
Paul Hagemann
J. Hertrich
Fabian Altekrüger
Robert Beinert
Jannis Chemseddine
Gabriele Steidl
ArXivPDFHTML

Papers citing "Posterior Sampling Based on Gradient Flows of the MMD with Negative Distance Kernel"

21 / 21 papers shown
Title
Slicing the Gaussian Mixture Wasserstein Distance
Slicing the Gaussian Mixture Wasserstein Distance
Moritz Piening
Robert Beinert
31
0
0
11 Apr 2025
Smoothed Distance Kernels for MMDs and Applications in Wasserstein Gradient Flows
Smoothed Distance Kernels for MMDs and Applications in Wasserstein Gradient Flows
Nicolaj Rux
Michael Quellmalz
Gabriele Steidl
22
0
0
10 Apr 2025
DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows
DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows
Jonathan Geuter
Clément Bonet
Anna Korba
David Alvarez-Melis
54
0
0
03 Mar 2025
Contextual Scenario Generation for Two-Stage Stochastic Programming
David Islip
Roy H. Kwon
Sanghyeon Bae
Woo Chang Kim
49
0
0
07 Feb 2025
Inclusive KL Minimization: A Wasserstein-Fisher-Rao Gradient Flow
  Perspective
Inclusive KL Minimization: A Wasserstein-Fisher-Rao Gradient Flow Perspective
Jia-Jie Zhu
66
1
0
31 Oct 2024
Conditional Generative Models for Contrast-Enhanced Synthesis of T1w and
  T1 Maps in Brain MRI
Conditional Generative Models for Contrast-Enhanced Synthesis of T1w and T1 Maps in Brain MRI
Moritz Piening
Fabian Altekrüger
Gabriele Steidl
Elke Hattingen
Eike Steidl
MedIm
24
0
0
11 Oct 2024
Fast Summation of Radial Kernels via QMC Slicing
Fast Summation of Radial Kernels via QMC Slicing
Johannes Hertrich
Tim Jahn
Michael Quellmalz
16
5
0
02 Oct 2024
Wasserstein Gradient Flows of MMD Functionals with Distance Kernel and
  Cauchy Problems on Quantile Functions
Wasserstein Gradient Flows of MMD Functionals with Distance Kernel and Cauchy Problems on Quantile Functions
Richard Duong
Viktor Stein
Robert Beinert
J. Hertrich
Gabriele Steidl
28
2
0
14 Aug 2024
Importance Corrected Neural JKO Sampling
Importance Corrected Neural JKO Sampling
Johannes Hertrich
Robert Gruhlke
26
1
0
29 Jul 2024
Rethinking the Diffusion Models for Numerical Tabular Data Imputation
  from the Perspective of Wasserstein Gradient Flow
Rethinking the Diffusion Models for Numerical Tabular Data Imputation from the Perspective of Wasserstein Gradient Flow
Zhichao Chen
Haoxuan Li
Fangyikang Wang
Odin Zhang
Hu Xu
Xiaoyu Jiang
Zhihuan Song
Eric H. Wang
DiffM
37
1
0
22 Jun 2024
Deep MMD Gradient Flow without adversarial training
Deep MMD Gradient Flow without adversarial training
Alexandre Galashov
Valentin De Bortoli
Arthur Gretton
DiffM
27
7
0
10 May 2024
Conditional Wasserstein Distances with Applications in Bayesian OT Flow
  Matching
Conditional Wasserstein Distances with Applications in Bayesian OT Flow Matching
Jannis Chemseddine
Paul Hagemann
Gabriele Steidl
Christian Wald
38
9
0
27 Mar 2024
Mixed Noise and Posterior Estimation with Conditional DeepGEM
Mixed Noise and Posterior Estimation with Conditional DeepGEM
Paul Hagemann
J. Hertrich
Maren Casfor
Sebastian Heidenreich
Gabriele Steidl
14
0
0
05 Feb 2024
Fast Kernel Summation in High Dimensions via Slicing and Fourier
  Transforms
Fast Kernel Summation in High Dimensions via Slicing and Fourier Transforms
Johannes Hertrich
18
7
0
16 Jan 2024
Learning from small data sets: Patch-based regularizers in inverse
  problems for image reconstruction
Learning from small data sets: Patch-based regularizers in inverse problems for image reconstruction
Moritz Piening
Fabian Altekrüger
J. Hertrich
Paul Hagemann
Andrea Walther
Gabriele Steidl
19
5
0
27 Dec 2023
Y-Diagonal Couplings: Approximating Posteriors with Conditional
  Wasserstein Distances
Y-Diagonal Couplings: Approximating Posteriors with Conditional Wasserstein Distances
Jannis Chemseddine
Paul Hagemann
Christian Wald
24
3
0
20 Oct 2023
Minimizing $f$-Divergences by Interpolating Velocity Fields
Minimizing fff-Divergences by Interpolating Velocity Fields
Song Liu
Jiahao Yu
J. Simons
Mingxuan Yi
Mark Beaumont
10
2
0
24 May 2023
Nonparametric Generative Modeling with Conditional Sliced-Wasserstein
  Flows
Nonparametric Generative Modeling with Conditional Sliced-Wasserstein Flows
Chao Du
Tianbo Li
Tianyu Pang
Shuicheng Yan
Min-Bin Lin
DiffM
BDL
38
12
0
03 May 2023
Bayesian Posterior Perturbation Analysis with Integral Probability
  Metrics
Bayesian Posterior Perturbation Analysis with Integral Probability Metrics
A. Garbuno-Iñigo
T. Helin
Franca Hoffmann
Bamdad Hosseini
23
9
0
02 Mar 2023
Functional Generalized Empirical Likelihood Estimation for Conditional
  Moment Restrictions
Functional Generalized Empirical Likelihood Estimation for Conditional Moment Restrictions
Heiner Kremer
Jia-Jie Zhu
Krikamol Muandet
Bernhard Schölkopf
27
8
0
11 Jul 2022
Variational Wasserstein gradient flow
Variational Wasserstein gradient flow
JiaoJiao Fan
Qinsheng Zhang
Amirhossein Taghvaei
Yongxin Chen
68
54
0
04 Dec 2021
1