ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.07591
  4. Cited By
PeP: a Point enhanced Painting method for unified point cloud tasks

PeP: a Point enhanced Painting method for unified point cloud tasks

11 October 2023
Zichao Dong
Hang Ji
Xufeng Huang
Weikun Zhang
Xin Zhan
Junbo Chen
    3DPC
ArXivPDFHTML

Papers citing "PeP: a Point enhanced Painting method for unified point cloud tasks"

6 / 6 papers shown
Title
MonoDETRNext: Next-generation Accurate and Efficient Monocular 3D Object
  Detection Method
MonoDETRNext: Next-generation Accurate and Efficient Monocular 3D Object Detection Method
Pan Liao
Feng Yang
Di Wu
Liu Bo
32
1
0
24 May 2024
LVIC: Multi-modality segmentation by Lifting Visual Info as Cue
LVIC: Multi-modality segmentation by Lifting Visual Info as Cue
Zichao Dong
Bowen Pang
Xufeng Huang
Hang Ji
Xin Zhan
Junbo Chen
3DPC
35
0
0
08 Mar 2024
Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion
  Models
Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models
Jiarui Xu
Sifei Liu
Arash Vahdat
Wonmin Byeon
Xiaolong Wang
Shalini De Mello
VLM
223
319
0
08 Mar 2023
Multimodal Virtual Point 3D Detection
Multimodal Virtual Point 3D Detection
Tianwei Yin
Xingyi Zhou
Philipp Krahenbuhl
3DPC
160
245
0
12 Nov 2021
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
222
14,099
0
02 Dec 2016
Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient
  Convolutional Neural Networks
Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks
Martin Engelcke
Dushyant Rao
Dominic Zeng Wang
Chi Hay Tong
Ingmar Posner
3DPC
192
521
0
21 Sep 2016
1