ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.10171
  4. Cited By
On permutation symmetries in Bayesian neural network posteriors: a
  variational perspective

On permutation symmetries in Bayesian neural network posteriors: a variational perspective

16 October 2023
Simone Rossi
Ankit Singh
T. Hannagan
ArXivPDFHTML

Papers citing "On permutation symmetries in Bayesian neural network posteriors: a variational perspective"

7 / 7 papers shown
Title
Beyond the Permutation Symmetry of Transformers: The Role of Rotation for Model Fusion
Beyond the Permutation Symmetry of Transformers: The Role of Rotation for Model Fusion
Binchi Zhang
Zaiyi Zheng
Zhengzhang Chen
Jundong Li
52
0
0
01 Feb 2025
Variational Inference Failures Under Model Symmetries: Permutation
  Invariant Posteriors for Bayesian Neural Networks
Variational Inference Failures Under Model Symmetries: Permutation Invariant Posteriors for Bayesian Neural Networks
Yoav Gelberg
Tycho F. A. van der Ouderaa
Mark van der Wilk
Y. Gal
AAML
35
4
0
10 Aug 2024
Tractable Function-Space Variational Inference in Bayesian Neural
  Networks
Tractable Function-Space Variational Inference in Bayesian Neural Networks
Tim G. J. Rudner
Zonghao Chen
Yee Whye Teh
Y. Gal
70
39
0
28 Dec 2023
Git Re-Basin: Merging Models modulo Permutation Symmetries
Git Re-Basin: Merging Models modulo Permutation Symmetries
Samuel K. Ainsworth
J. Hayase
S. Srinivasa
MoMe
239
312
0
11 Sep 2022
Deep Networks on Toroids: Removing Symmetries Reveals the Structure of
  Flat Regions in the Landscape Geometry
Deep Networks on Toroids: Removing Symmetries Reveals the Structure of Flat Regions in the Landscape Geometry
Fabrizio Pittorino
Antonio Ferraro
Gabriele Perugini
Christoph Feinauer
Carlo Baldassi
R. Zecchina
199
24
0
07 Feb 2022
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,652
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,109
0
06 Jun 2015
1