ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.12977
  4. Cited By
Training Dynamics of Deep Network Linear Regions

Training Dynamics of Deep Network Linear Regions

19 October 2023
Ahmed Imtiaz Humayun
Randall Balestriero
Richard Baraniuk
ArXivPDFHTML

Papers citing "Training Dynamics of Deep Network Linear Regions"

6 / 6 papers shown
Title
Grokking in the Wild: Data Augmentation for Real-World Multi-Hop Reasoning with Transformers
Grokking in the Wild: Data Augmentation for Real-World Multi-Hop Reasoning with Transformers
Roman Abramov
Felix Steinbauer
Gjergji Kasneci
39
0
0
29 Apr 2025
Omnigrok: Grokking Beyond Algorithmic Data
Omnigrok: Grokking Beyond Algorithmic Data
Ziming Liu
Eric J. Michaud
Max Tegmark
54
76
0
03 Oct 2022
Learning in High Dimension Always Amounts to Extrapolation
Learning in High Dimension Always Amounts to Extrapolation
Randall Balestriero
J. Pesenti
Yann LeCun
31
102
0
18 Oct 2021
MaGNET: Uniform Sampling from Deep Generative Network Manifolds Without
  Retraining
MaGNET: Uniform Sampling from Deep Generative Network Manifolds Without Retraining
Ahmed Imtiaz Humayun
Randall Balestriero
Richard Baraniuk
OOD
35
29
0
15 Oct 2021
Max-Affine Spline Insights Into Deep Network Pruning
Max-Affine Spline Insights Into Deep Network Pruning
Haoran You
Randall Balestriero
Zhihan Lu
Yutong Kou
Huihong Shi
Shunyao Zhang
Shang Wu
Yingyan Lin
Richard Baraniuk
AAML
23
9
0
07 Jan 2021
The large learning rate phase of deep learning: the catapult mechanism
The large learning rate phase of deep learning: the catapult mechanism
Aitor Lewkowycz
Yasaman Bahri
Ethan Dyer
Jascha Narain Sohl-Dickstein
Guy Gur-Ari
ODL
150
232
0
04 Mar 2020
1