ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.14230
  4. Cited By
A comprehensive survey on deep active learning in medical image analysis

A comprehensive survey on deep active learning in medical image analysis

22 October 2023
Haoran Wang
Q. Jin
Shiman Li
Siyu Liu
Manning Wang
Zhijian Song
    VLM
ArXivPDFHTML

Papers citing "A comprehensive survey on deep active learning in medical image analysis"

13 / 13 papers shown
Title
Active Finetuning: Exploiting Annotation Budget in the
  Pretraining-Finetuning Paradigm
Active Finetuning: Exploiting Annotation Budget in the Pretraining-Finetuning Paradigm
Yichen Xie
Han Lu
Junchi Yan
Xiaokang Yang
M. Tomizuka
Wei Zhan
28
29
0
25 Mar 2023
Warm Start Active Learning with Proxy Labels \& Selection via
  Semi-Supervised Fine-Tuning
Warm Start Active Learning with Proxy Labels \& Selection via Semi-Supervised Fine-Tuning
V. Nath
Dong Yang
H. Roth
Daguang Xu
26
21
0
13 Sep 2022
Active Learning on a Budget: Opposite Strategies Suit High and Low
  Budgets
Active Learning on a Budget: Opposite Strategies Suit High and Low Budgets
Guy Hacohen
Avihu Dekel
D. Weinshall
107
81
0
06 Feb 2022
MedMNIST v2 -- A large-scale lightweight benchmark for 2D and 3D
  biomedical image classification
MedMNIST v2 -- A large-scale lightweight benchmark for 2D and 3D biomedical image classification
Jiancheng Yang
Rui Shi
D. Wei
Zequan Liu
Lin Zhao
B. Ke
Hanspeter Pfister
Bingbing Ni
VLM
158
634
0
27 Oct 2021
Unsupervised Selective Labeling for More Effective Semi-Supervised
  Learning
Unsupervised Selective Labeling for More Effective Semi-Supervised Learning
Xudong Wang
Long Lian
Stella X. Yu
168
32
0
06 Oct 2021
S$^3$VAADA: Submodular Subset Selection for Virtual Adversarial Active
  Domain Adaptation
S3^33VAADA: Submodular Subset Selection for Virtual Adversarial Active Domain Adaptation
Harsh Rangwani
Arihant Jain
Sumukh K Aithal
R. Venkatesh Babu
TTA
23
23
0
18 Sep 2021
MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from
  Medical Images Using Deep Learning
MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning
Xiangde Luo
Guotai Wang
Tao Song
Jingyang Zhang
Michael Aertsen
Jan Deprest
Sebastien Ourselin
Tom Kamiel Magda Vercauteren
Shaoting Zhang
35
96
0
25 Apr 2021
Learning Guided Electron Microscopy with Active Acquisition
Learning Guided Electron Microscopy with Active Acquisition
Lu Mi
Hao Wang
Yaron Meirovitch
R. Schalek
Srinivas C. Turaga
J. Lichtman
Aravinthan D. T. Samuel
Nir Shavit
30
5
0
07 Jan 2021
Cold-start Active Learning through Self-supervised Language Modeling
Cold-start Active Learning through Self-supervised Language Modeling
Michelle Yuan
Hsuan-Tien Lin
Jordan L. Boyd-Graber
99
180
0
19 Oct 2020
Active Domain Adaptation via Clustering Uncertainty-weighted Embeddings
Active Domain Adaptation via Clustering Uncertainty-weighted Embeddings
Viraj Prabhu
Arjun Chandrasekaran
Kate Saenko
Judy Hoffman
OOD
90
119
0
16 Oct 2020
Consistency-based Semi-supervised Active Learning: Towards Minimizing
  Labeling Cost
Consistency-based Semi-supervised Active Learning: Towards Minimizing Labeling Cost
M. Gao
Zizhao Zhang
Guo-Ding Yu
Sercan Ö. Arik
L. Davis
Tomas Pfister
143
194
0
16 Oct 2019
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
243
9,042
0
06 Jun 2015
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
226
74,467
0
18 May 2015
1