ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.15355
  4. Cited By
Why LLMs Hallucinate, and How to Get (Evidential) Closure: Perceptual,
  Intensional, and Extensional Learning for Faithful Natural Language
  Generation

Why LLMs Hallucinate, and How to Get (Evidential) Closure: Perceptual, Intensional, and Extensional Learning for Faithful Natural Language Generation

23 October 2023
Adam Bouyamourn
ArXivPDFHTML

Papers citing "Why LLMs Hallucinate, and How to Get (Evidential) Closure: Perceptual, Intensional, and Extensional Learning for Faithful Natural Language Generation"

10 / 10 papers shown
Title
1.5-Pints Technical Report: Pretraining in Days, Not Months -- Your
  Language Model Thrives on Quality Data
1.5-Pints Technical Report: Pretraining in Days, Not Months -- Your Language Model Thrives on Quality Data
Calvin Tan
Jerome Wang
ALM
33
2
0
07 Aug 2024
Look Within, Why LLMs Hallucinate: A Causal Perspective
Look Within, Why LLMs Hallucinate: A Causal Perspective
He Li
Haoang Chi
Mingyu Liu
Wenjing Yang
LRM
29
3
0
14 Jul 2024
Linguistically Conditioned Semantic Textual Similarity
Linguistically Conditioned Semantic Textual Similarity
Jingxuan Tu
Keer Xu
Liulu Yue
Bingyang Ye
Kyeongmin Rim
James Pustejovsky
38
1
0
06 Jun 2024
CodeHalu: Investigating Code Hallucinations in LLMs via Execution-based Verification
CodeHalu: Investigating Code Hallucinations in LLMs via Execution-based Verification
Yuchen Tian
Weixiang Yan
Qian Yang
Xuandong Zhao
Qian Chen
Ziyang Luo
Lei Ma
Lei Ma
Dawn Song
21
7
0
30 Apr 2024
Context Does Matter: Implications for Crowdsourced Evaluation Labels in
  Task-Oriented Dialogue Systems
Context Does Matter: Implications for Crowdsourced Evaluation Labels in Task-Oriented Dialogue Systems
Clemencia Siro
Mohammad Aliannejadi
Maarten de Rijke
27
3
0
15 Apr 2024
Triple-Encoders: Representations That Fire Together, Wire Together
Triple-Encoders: Representations That Fire Together, Wire Together
Justus-Jonas Erker
Florian Mai
Nils Reimers
Gerasimos Spanakis
Iryna Gurevych
15
2
0
19 Feb 2024
HGOT: Hierarchical Graph of Thoughts for Retrieval-Augmented In-Context
  Learning in Factuality Evaluation
HGOT: Hierarchical Graph of Thoughts for Retrieval-Augmented In-Context Learning in Factuality Evaluation
Yihao Fang
Stephen W. Thomas
Xiaodan Zhu
RALM
13
2
0
14 Feb 2024
Prompting open-source and commercial language models for grammatical error correction of English learner text
Prompting open-source and commercial language models for grammatical error correction of English learner text
Christopher Davis
Andrew Caines
Oistein Andersen
Shiva Taslimipoor
H. Yannakoudakis
Zheng Yuan
Christopher Bryant
Marek Rei
P. Buttery
27
13
0
15 Jan 2024
Language Models as Knowledge Bases?
Language Models as Knowledge Bases?
Fabio Petroni
Tim Rocktaschel
Patrick Lewis
A. Bakhtin
Yuxiang Wu
Alexander H. Miller
Sebastian Riedel
KELM
AI4MH
404
2,576
0
03 Sep 2019
Google's Neural Machine Translation System: Bridging the Gap between
  Human and Machine Translation
Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation
Yonghui Wu
M. Schuster
Z. Chen
Quoc V. Le
Mohammad Norouzi
...
Alex Rudnick
Oriol Vinyals
G. Corrado
Macduff Hughes
J. Dean
AIMat
716
6,724
0
26 Sep 2016
1