ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.16584
  4. Cited By
Learning to Explain: A Model-Agnostic Framework for Explaining Black Box
  Models

Learning to Explain: A Model-Agnostic Framework for Explaining Black Box Models

25 October 2023
Oren Barkan
Yuval Asher
Amit Eshel
Yehonatan Elisha
Noam Koenigstein
ArXivPDFHTML

Papers citing "Learning to Explain: A Model-Agnostic Framework for Explaining Black Box Models"

4 / 4 papers shown
Title
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
258
7,337
0
11 Nov 2021
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
PINN
3DV
244
35,884
0
25 Aug 2016
Bayesian Neural Word Embedding
Bayesian Neural Word Embedding
Oren Barkan
BDL
120
87
0
21 Mar 2016
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image
  Segmentation
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
420
15,438
0
02 Nov 2015
1