ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.17330
  4. Cited By
CQM: Curriculum Reinforcement Learning with a Quantized World Model

CQM: Curriculum Reinforcement Learning with a Quantized World Model

26 October 2023
Seungjae Lee
Daesol Cho
Jonghae Park
H. J. Kim
ArXivPDFHTML

Papers citing "CQM: Curriculum Reinforcement Learning with a Quantized World Model"

4 / 4 papers shown
Title
CurricuLLM: Automatic Task Curricula Design for Learning Complex Robot Skills using Large Language Models
CurricuLLM: Automatic Task Curricula Design for Learning Complex Robot Skills using Large Language Models
Kanghyun Ryu
Qiayuan Liao
Zhongyu Li
K. Sreenath
Negar Mehr
Negar Mehr
LM&Ro
71
2
0
27 Sep 2024
LAGMA: LAtent Goal-guided Multi-Agent Reinforcement Learning
LAGMA: LAtent Goal-guided Multi-Agent Reinforcement Learning
Hyungho Na
IL-Chul Moon
30
1
0
30 May 2024
Planning Goals for Exploration
Planning Goals for Exploration
E. Hu
Richard Chang
Oleh Rybkin
Dinesh Jayaraman
35
23
0
23 Mar 2023
DHRL: A Graph-Based Approach for Long-Horizon and Sparse Hierarchical
  Reinforcement Learning
DHRL: A Graph-Based Approach for Long-Horizon and Sparse Hierarchical Reinforcement Learning
Seungjae Lee
Jigang Kim
Inkyu Jang
H. J. Kim
OffRL
16
10
0
11 Oct 2022
1