ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.17966
  4. Cited By
Train Once, Get a Family: State-Adaptive Balances for Offline-to-Online
  Reinforcement Learning

Train Once, Get a Family: State-Adaptive Balances for Offline-to-Online Reinforcement Learning

27 October 2023
Shenzhi Wang
Qisen Yang
Jiawei Gao
Matthieu Lin
Hao Chen
Liwei Wu
Ning Jia
Shiji Song
Gao Huang
    OffRL
ArXivPDFHTML

Papers citing "Train Once, Get a Family: State-Adaptive Balances for Offline-to-Online Reinforcement Learning"

8 / 8 papers shown
Title
Skill Expansion and Composition in Parameter Space
Skill Expansion and Composition in Parameter Space
Tenglong Liu
J. Li
Yinan Zheng
Haoyi Niu
Yixing Lan
Xin Xu
Xianyuan Zhan
53
4
0
09 Feb 2025
Rank-DETR for High Quality Object Detection
Rank-DETR for High Quality Object Detection
Yifan Pu
Weicong Liang
Yiduo Hao
Yuhui Yuan
Yukang Yang
Chao Zhang
Hanhua Hu
Gao Huang
36
52
0
13 Oct 2023
Learning to Weight Samples for Dynamic Early-exiting Networks
Learning to Weight Samples for Dynamic Early-exiting Networks
Yizeng Han
Yifan Pu
Zihang Lai
Chaofei Wang
S. Song
Junfen Cao
Wenhui Huang
Chao Deng
Gao Huang
54
54
0
17 Sep 2022
Value-Consistent Representation Learning for Data-Efficient
  Reinforcement Learning
Value-Consistent Representation Learning for Data-Efficient Reinforcement Learning
Yang Yue
Bingyi Kang
Zhongwen Xu
Gao Huang
Shuicheng Yan
OffRL
27
13
0
25 Jun 2022
User-Interactive Offline Reinforcement Learning
User-Interactive Offline Reinforcement Learning
Phillip Swazinna
Steffen Udluft
Thomas Runkler
OffRL
15
11
0
21 May 2022
Offline Reinforcement Learning with Implicit Q-Learning
Offline Reinforcement Learning with Implicit Q-Learning
Ilya Kostrikov
Ashvin Nair
Sergey Levine
OffRL
212
832
0
12 Oct 2021
Hierarchical Reinforcement Learning By Discovering Intrinsic Options
Hierarchical Reinforcement Learning By Discovering Intrinsic Options
Jesse Zhang
Haonan Yu
W. Xu
BDL
120
81
0
16 Jan 2021
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on
  Open Problems
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems
Sergey Levine
Aviral Kumar
George Tucker
Justin Fu
OffRL
GP
329
1,944
0
04 May 2020
1