ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.18953
  4. Cited By
TIC-TAC: A Framework for Improved Covariance Estimation in Deep
  Heteroscedastic Regression

TIC-TAC: A Framework for Improved Covariance Estimation in Deep Heteroscedastic Regression

29 October 2023
Megh Shukla
Mathieu Salzmann
Alexandre Alahi
ArXivPDFHTML

Papers citing "TIC-TAC: A Framework for Improved Covariance Estimation in Deep Heteroscedastic Regression"

4 / 4 papers shown
Title
Scalable Dynamic Mixture Model with Full Covariance for Probabilistic Traffic Forecasting
Scalable Dynamic Mixture Model with Full Covariance for Probabilistic Traffic Forecasting
Seongjin Choi
Nicolas Saunier
Vincent Zhihao Zheng
M. Trépanier
Lijun Sun
4
1
0
10 Dec 2022
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Sanae Lotfi
Pavel Izmailov
Gregory W. Benton
Micah Goldblum
A. Wilson
UQCV
BDL
45
55
0
23 Feb 2022
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,635
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,042
0
06 Jun 2015
1