ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.01646
  4. Cited By
SemiGPC: Distribution-Aware Label Refinement for Imbalanced
  Semi-Supervised Learning Using Gaussian Processes

SemiGPC: Distribution-Aware Label Refinement for Imbalanced Semi-Supervised Learning Using Gaussian Processes

3 November 2023
Abdelhak Lemkhenter
Manchen Wang
L. Zancato
Gurumurthy Swaminathan
Paolo Favaro
Davide Modolo
ArXivPDFHTML

Papers citing "SemiGPC: Distribution-Aware Label Refinement for Imbalanced Semi-Supervised Learning Using Gaussian Processes"

6 / 6 papers shown
Title
NP-Match: When Neural Processes meet Semi-Supervised Learning
NP-Match: When Neural Processes meet Semi-Supervised Learning
Jianfeng Wang
Thomas Lukasiewicz
Daniela Massiceti
Xiaolin Hu
Vladimir Pavlovic
A. Neophytou
BDL
63
42
0
03 Jul 2022
FreeMatch: Self-adaptive Thresholding for Semi-supervised Learning
FreeMatch: Self-adaptive Thresholding for Semi-supervised Learning
Yidong Wang
Hao Chen
Qiang Heng
Wenxin Hou
Yue Fan
...
Marios Savvides
T. Shinozaki
Bhiksha Raj
Bernt Schiele
Xing Xie
177
256
0
15 May 2022
Dense Gaussian Processes for Few-Shot Segmentation
Dense Gaussian Processes for Few-Shot Segmentation
Joakim Johnander
Johan Edstedt
M. Felsberg
F. Khan
Martin Danelljan
59
30
0
07 Oct 2021
Trust Your Robots! Predictive Uncertainty Estimation of Neural Networks
  with Sparse Gaussian Processes
Trust Your Robots! Predictive Uncertainty Estimation of Neural Networks with Sparse Gaussian Processes
Jongseo Lee
Jianxiang Feng
Matthias Humt
M. Müller
Rudolph Triebel
UQCV
46
21
0
20 Sep 2021
Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
292
5,761
0
29 Apr 2021
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,109
0
06 Jun 2015
1