ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.05400
  4. Cited By
SIRE: scale-invariant, rotation-equivariant estimation of artery
  orientations using graph neural networks

SIRE: scale-invariant, rotation-equivariant estimation of artery orientations using graph neural networks

9 November 2023
Dieuwertje Alblas
Julian Suk
Christoph Brune
K. K. Yeung
J. Wolterink
    MedIm
ArXivPDFHTML

Papers citing "SIRE: scale-invariant, rotation-equivariant estimation of artery orientations using graph neural networks"

5 / 5 papers shown
Title
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric
  graphs
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs
P. D. Haan
Maurice Weiler
Taco S. Cohen
Max Welling
89
127
0
11 Mar 2020
Deep learning for cardiac image segmentation: A review
Deep learning for cardiac image segmentation: A review
C. L. P. Chen
C. Qin
Huaqi Qiu
G. Tarroni
Jinming Duan
Wenjia Bai
Daniel Rueckert
SSeg
3DV
53
672
0
09 Nov 2019
A Survey on Deep Learning in Medical Image Analysis
A Survey on Deep Learning in Medical Image Analysis
G. Litjens
Thijs Kooi
B. Bejnordi
A. Setio
F. Ciompi
Mohsen Ghafoorian
Jeroen van der Laak
Bram van Ginneken
C. I. Sánchez
OOD
278
10,599
0
19 Feb 2017
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,109
0
06 Jun 2015
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
232
75,445
0
18 May 2015
1