Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2311.06184
Cited By
Frequency-domain MLPs are More Effective Learners in Time Series Forecasting
10 November 2023
Kun Yi
Qi Zhang
Wei Fan
Shoujin Wang
Pengyang Wang
Hui He
Defu Lian
Ning An
Longbin Cao
ZhenDong Niu
AI4TS
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Frequency-domain MLPs are More Effective Learners in Time Series Forecasting"
7 / 7 papers shown
Title
FLARE: A Framework for Stellar Flare Forecasting using Stellar Physical Properties and Historical Records
Bingke Zhu
Xiaoxiao Wang
Minghui Jia
Yihan Tao
Xiao Kong
Ali Luo
Yingying Chen
Ming Tang
J. T. Wang
38
42
0
25 Feb 2025
FreDF: Learning to Forecast in the Frequency Domain
Hao Wang
Licheng Pan
Zhichao Chen
Degui Yang
Sen Zhang
Yifei Yang
Xinggao Liu
Haoxuan Li
Dacheng Tao
AI4TS
24
46
0
04 Feb 2024
Less Is More: Fast Multivariate Time Series Forecasting with Light Sampling-oriented MLP Structures
T. Zhang
Yizhuo Zhang
Wei Cao
Jiang Bian
Xiaohan Yi
Shun Zheng
Jian Li
BDL
AI4TS
74
91
0
04 Jul 2022
FiLM: Frequency improved Legendre Memory Model for Long-term Time Series Forecasting
Tian Zhou
Ziqing Ma
Xue Wang
Qingsong Wen
Liang Sun
Tao Yao
Wotao Yin
Rong Jin
AI4TS
103
102
0
18 May 2022
CoST: Contrastive Learning of Disentangled Seasonal-Trend Representations for Time Series Forecasting
Gerald Woo
Chenghao Liu
Doyen Sahoo
Akshat Kumar
Steven C. H. Hoi
AI4TS
93
352
0
03 Feb 2022
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting
Haoyi Zhou
Shanghang Zhang
J. Peng
Shuai Zhang
Jianxin Li
Hui Xiong
Wan Zhang
AI4TS
146
2,327
0
14 Dec 2020
Efficient Estimation of Word Representations in Vector Space
Tomáš Mikolov
Kai Chen
G. Corrado
J. Dean
3DV
226
9,999
0
16 Jan 2013
1