ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.10468
  4. Cited By
Using Cooperative Game Theory to Prune Neural Networks

Using Cooperative Game Theory to Prune Neural Networks

17 November 2023
M. Diaz-Ortiz
Benjamin Kempinski
Daphne Cornelisse
Yoram Bachrach
Tal Kachman
ArXivPDFHTML

Papers citing "Using Cooperative Game Theory to Prune Neural Networks"

7 / 7 papers shown
Title
Explaining Quantum Circuits with Shapley Values: Towards Explainable Quantum Machine Learning
Explaining Quantum Circuits with Shapley Values: Towards Explainable Quantum Machine Learning
R. Heese
Thore Gerlach
Sascha Mucke
Sabine Muller
Matthias Jakobs
Nico Piatkowski
18
17
0
22 Jan 2023
FastSHAP: Real-Time Shapley Value Estimation
FastSHAP: Real-Time Shapley Value Estimation
N. Jethani
Mukund Sudarshan
Ian Covert
Su-In Lee
Rajesh Ranganath
TDI
FAtt
56
120
0
15 Jul 2021
Negotiating Team Formation Using Deep Reinforcement Learning
Negotiating Team Formation Using Deep Reinforcement Learning
Yoram Bachrach
Richard Everett
Edward Hughes
Angeliki Lazaridou
Joel Z. Leibo
Marc Lanctot
Michael Bradley Johanson
Wojciech M. Czarnecki
T. Graepel
30
33
0
20 Oct 2020
The Lottery Ticket Hypothesis for Pre-trained BERT Networks
The Lottery Ticket Hypothesis for Pre-trained BERT Networks
Tianlong Chen
Jonathan Frankle
Shiyu Chang
Sijia Liu
Yang Zhang
Zhangyang Wang
Michael Carbin
148
345
0
23 Jul 2020
What is the State of Neural Network Pruning?
What is the State of Neural Network Pruning?
Davis W. Blalock
Jose Javier Gonzalez Ortiz
Jonathan Frankle
John Guttag
172
1,018
0
06 Mar 2020
Bayesian Convolutional Neural Networks with Bernoulli Approximate
  Variational Inference
Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference
Y. Gal
Zoubin Ghahramani
UQCV
BDL
197
741
0
06 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,042
0
06 Jun 2015
1