ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.17932
  4. Cited By
Swallowing the Bitter Pill: Simplified Scalable Conformer Generation

Swallowing the Bitter Pill: Simplified Scalable Conformer Generation

27 November 2023
Yuyang Wang
Ahmed A. A. Elhag
Navdeep Jaitly
J. Susskind
Miguel Angel Bautista
    DiffM
ArXivPDFHTML

Papers citing "Swallowing the Bitter Pill: Simplified Scalable Conformer Generation"

17 / 17 papers shown
Title
polyGen: A Learning Framework for Atomic-level Polymer Structure Generation
polyGen: A Learning Framework for Atomic-level Polymer Structure Generation
Ayush Jain
Rampi Ramprasad
34
0
0
24 Apr 2025
PolyConf: Unlocking Polymer Conformation Generation through Hierarchical Generative Models
PolyConf: Unlocking Polymer Conformation Generation through Hierarchical Generative Models
Fanmeng Wang
Wentao Guo
Qi Ou
Hongshuai Wang
Haitao Lin
Hongteng Xu
Zhifeng Gao
AI4CE
27
1
0
11 Apr 2025
Towards Unified Latent Space for 3D Molecular Latent Diffusion Modeling
Towards Unified Latent Space for 3D Molecular Latent Diffusion Modeling
Yanchen Luo
Zhiyuan Liu
Yi Zhao
Sihang Li
Kenji Kawaguchi
Tat-Seng Chua
X. Wang
MedIm
59
0
0
19 Mar 2025
All-atom Diffusion Transformers: Unified generative modelling of molecules and materials
Chaitanya K. Joshi
Xiang Fu
Yi-Lun Liao
Vahe Gharakhanyan
Benjamin Kurt Miller
Anuroop Sriram
Zachary W. Ulissi
DiffM
53
3
0
05 Mar 2025
NExT-Mol: 3D Diffusion Meets 1D Language Modeling for 3D Molecule Generation
NExT-Mol: 3D Diffusion Meets 1D Language Modeling for 3D Molecule Generation
Zhiyuan Liu
Yanchen Luo
Han Huang
Enzhi Zhang
Sihang Li
Junfeng Fang
Yaorui Shi
X. Wang
Kenji Kawaguchi
Tat-Seng Chua
97
3
0
18 Feb 2025
Symmetry-Preserving Diffusion Models via Target Symmetrization
Symmetry-Preserving Diffusion Models via Target Symmetrization
Vinh Tong
Yun Ye
Trung-Dung Hoang
Anji Liu
Guy Van den Broeck
Mathias Niepert
DiffM
75
0
0
17 Feb 2025
ET-Flow: Equivariant Flow-Matching for Molecular Conformer Generation
ET-Flow: Equivariant Flow-Matching for Molecular Conformer Generation
Majdi Hassan
Nikhil Shenoy
Jungyoon Lee
Hannes Stärk
Stephan Thaler
Dominique Beaini
18
0
0
29 Oct 2024
Relaxed Equivariance via Multitask Learning
Relaxed Equivariance via Multitask Learning
Ahmed A. A. Elhag
T. Konstantin Rusch
Francesco Di Giovanni
Michael Bronstein
42
2
0
23 Oct 2024
MING: A Functional Approach to Learning Molecular Generative Models
MING: A Functional Approach to Learning Molecular Generative Models
Van Khoa Nguyen
Maciej Falkiewicz
Giangiacomo Mercatali
Alexandros Kalousis
DiffM
AI4CE
16
0
0
16 Oct 2024
AdsorbDiff: Adsorbate Placement via Conditional Denoising Diffusion
AdsorbDiff: Adsorbate Placement via Conditional Denoising Diffusion
Adeesh Kolluru
John R. Kitchin
DiffM
37
3
0
07 May 2024
Let Your Graph Do the Talking: Encoding Structured Data for LLMs
Let Your Graph Do the Talking: Encoding Structured Data for LLMs
Bryan Perozzi
Bahare Fatemi
Dustin Zelle
Anton Tsitsulin
Mehran Kazemi
Rami Al-Rfou
Jonathan J. Halcrow
GNN
27
55
0
08 Feb 2024
Normalizing flows for lattice gauge theory in arbitrary space-time
  dimension
Normalizing flows for lattice gauge theory in arbitrary space-time dimension
Ryan Abbott
M. S. Albergo
Aleksandar Botev
D. Boyda
Kyle Cranmer
...
Ali Razavi
Danilo Jimenez Rezende
F. Romero-López
P. Shanahan
Julian M. Urban
AI4CE
41
30
0
03 May 2023
Generalized Laplacian Positional Encoding for Graph Representation
  Learning
Generalized Laplacian Positional Encoding for Graph Representation Learning
Sohir Maskey
Alipanah Parviz
Maximilian Thiessen
Hannes Stärk
Ylli Sadikaj
Haggai Maron
AI4CE
32
15
0
28 Oct 2022
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking
Gabriele Corso
Hannes Stärk
Bowen Jing
Regina Barzilay
Tommi Jaakkola
DiffM
130
399
0
04 Oct 2022
Are Transformers More Robust Than CNNs?
Are Transformers More Robust Than CNNs?
Yutong Bai
Jieru Mei
Alan Yuille
Cihang Xie
ViT
AAML
167
256
0
10 Nov 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
188
1,218
0
08 Jan 2021
Benchmarking Graph Neural Networks
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
181
907
0
02 Mar 2020
1