ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.01617
  4. Cited By
Heroes: Lightweight Federated Learning with Neural Composition and
  Adaptive Local Update in Heterogeneous Edge Networks

Heroes: Lightweight Federated Learning with Neural Composition and Adaptive Local Update in Heterogeneous Edge Networks

4 December 2023
Jiaming Yan
Jianchun Liu
Shilong Wang
Hong-Ze Xu
Haifeng Liu
Jianhua Zhou
    FedML
ArXivPDFHTML

Papers citing "Heroes: Lightweight Federated Learning with Neural Composition and Adaptive Local Update in Heterogeneous Edge Networks"

2 / 2 papers shown
Title
FjORD: Fair and Accurate Federated Learning under heterogeneous targets
  with Ordered Dropout
FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout
Samuel Horváth
Stefanos Laskaridis
Mario Almeida
Ilias Leondiadis
Stylianos I. Venieris
Nicholas D. Lane
176
267
0
26 Feb 2021
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
296
39,194
0
01 Sep 2014
1