ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.02592
  4. Cited By
FRAPPE: A Group Fairness Framework for Post-Processing Everything

FRAPPE: A Group Fairness Framework for Post-Processing Everything

5 December 2023
Alexandru Tifrea
Preethi Lahoti
Ben Packer
Yoni Halpern
Ahmad Beirami
Flavien Prost
ArXivPDFHTML

Papers citing "FRAPPE: A Group Fairness Framework for Post-Processing Everything"

9 / 9 papers shown
Title
Multi-Output Distributional Fairness via Post-Processing
Multi-Output Distributional Fairness via Post-Processing
Gang Li
Qihang Lin
Ayush Ghosh
Tianbao Yang
47
0
0
31 Aug 2024
Fairness Reprogramming
Fairness Reprogramming
Guanhua Zhang
Yihua Zhang
Yang Zhang
Wenqi Fan
Qing Li
Sijia Liu
Shiyu Chang
AAML
78
38
0
21 Sep 2022
Fairness via In-Processing in the Over-parameterized Regime: A
  Cautionary Tale
Fairness via In-Processing in the Over-parameterized Regime: A Cautionary Tale
A. Veldanda
Ivan Brugere
Jiahao Chen
Sanghamitra Dutta
Alan Mishler
S. Garg
22
7
0
29 Jun 2022
Learning Fair Classifiers with Partially Annotated Group Labels
Learning Fair Classifiers with Partially Annotated Group Labels
Sangwon Jung
Sanghyuk Chun
Taesup Moon
60
46
0
29 Nov 2021
Fairness without Imputation: A Decision Tree Approach for Fair
  Prediction with Missing Values
Fairness without Imputation: A Decision Tree Approach for Fair Prediction with Missing Values
Haewon Jeong
Hao Wang
Flavio du Pin Calmon
FaML
49
33
0
21 Sep 2021
Evaluating Fairness of Machine Learning Models Under Uncertain and
  Incomplete Information
Evaluating Fairness of Machine Learning Models Under Uncertain and Incomplete Information
Pranjal Awasthi
Alex Beutel
Matthaeus Kleindessner
Jamie Morgenstern
Xuezhi Wang
FaML
54
55
0
16 Feb 2021
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
294
4,187
0
23 Aug 2019
Improving fairness in machine learning systems: What do industry
  practitioners need?
Improving fairness in machine learning systems: What do industry practitioners need?
Kenneth Holstein
Jennifer Wortman Vaughan
Hal Daumé
Miroslav Dudík
Hanna M. Wallach
FaML
HAI
192
739
0
13 Dec 2018
Learning Adversarially Fair and Transferable Representations
Learning Adversarially Fair and Transferable Representations
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
210
669
0
17 Feb 2018
1