Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2312.05391
Cited By
Loss Functions in the Era of Semantic Segmentation: A Survey and Outlook
8 December 2023
Reza Azad
Moein Heidary
Kadir Yilmaz
Michael Huttemann
Sanaz Karimijafarbigloo
Yuli Wu
Anke Schmeink
Dorit Merhof
VLM
SSeg
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Loss Functions in the Era of Semantic Segmentation: A Survey and Outlook"
7 / 7 papers shown
Title
Transport-Related Surface Detection with Machine Learning: Analyzing Temporal Trends in Madrid and Vienna
Miguel Ureña Pliego
Rubén Martínez Marín
Nianfang Shi
Takeru Shibayama
Ulrich Leth
Miguel Marchamalo Sacristán
53
0
0
19 Mar 2025
GBT-SAM: Adapting a Foundational Deep Learning Model for Generalizable Brain Tumor Segmentation via Efficient Integration of Multi-Parametric MRI Data
Cecilia Diana-Albelda
Roberto Alcover-Couso
Álvaro García-Martín
Jesús Bescós
Marcos Escudero-Viñolo
40
1
0
06 Mar 2025
Foundational Models in Medical Imaging: A Comprehensive Survey and Future Vision
Bobby Azad
Reza Azad
Sania Eskandari
Afshin Bozorgpour
A. Kazerouni
I. Rekik
Dorit Merhof
VLM
MedIm
93
59
0
28 Oct 2023
Semi-supervised Multi-task Learning for Semantics and Depth
Yufeng Wang
Yi-Hsuan Tsai
Wei-Chih Hung
Wenrui Ding
Shuo Liu
Ming-Hsuan Yang
29
18
0
14 Oct 2021
MISSFormer: An Effective Medical Image Segmentation Transformer
Xiaohong Huang
Zhifang Deng
Dandan Li
Xueguang Yuan
ViT
MedIm
87
172
0
15 Sep 2021
Unified Focal loss: Generalising Dice and cross entropy-based losses to handle class imbalanced medical image segmentation
Michael Yeung
Evis Sala
Carola-Bibiane Schönlieb
L. Rundo
25
393
0
08 Feb 2021
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
232
75,445
0
18 May 2015
1