ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.05391
  4. Cited By
Loss Functions in the Era of Semantic Segmentation: A Survey and Outlook

Loss Functions in the Era of Semantic Segmentation: A Survey and Outlook

8 December 2023
Reza Azad
Moein Heidary
Kadir Yilmaz
Michael Huttemann
Sanaz Karimijafarbigloo
Yuli Wu
Anke Schmeink
Dorit Merhof
    VLM
    SSeg
ArXivPDFHTML

Papers citing "Loss Functions in the Era of Semantic Segmentation: A Survey and Outlook"

7 / 7 papers shown
Title
Transport-Related Surface Detection with Machine Learning: Analyzing Temporal Trends in Madrid and Vienna
Transport-Related Surface Detection with Machine Learning: Analyzing Temporal Trends in Madrid and Vienna
Miguel Ureña Pliego
Rubén Martínez Marín
Nianfang Shi
Takeru Shibayama
Ulrich Leth
Miguel Marchamalo Sacristán
53
0
0
19 Mar 2025
GBT-SAM: Adapting a Foundational Deep Learning Model for Generalizable Brain Tumor Segmentation via Efficient Integration of Multi-Parametric MRI Data
GBT-SAM: Adapting a Foundational Deep Learning Model for Generalizable Brain Tumor Segmentation via Efficient Integration of Multi-Parametric MRI Data
Cecilia Diana-Albelda
Roberto Alcover-Couso
Álvaro García-Martín
Jesús Bescós
Marcos Escudero-Viñolo
40
1
0
06 Mar 2025
Foundational Models in Medical Imaging: A Comprehensive Survey and
  Future Vision
Foundational Models in Medical Imaging: A Comprehensive Survey and Future Vision
Bobby Azad
Reza Azad
Sania Eskandari
Afshin Bozorgpour
A. Kazerouni
I. Rekik
Dorit Merhof
VLM
MedIm
93
59
0
28 Oct 2023
Semi-supervised Multi-task Learning for Semantics and Depth
Semi-supervised Multi-task Learning for Semantics and Depth
Yufeng Wang
Yi-Hsuan Tsai
Wei-Chih Hung
Wenrui Ding
Shuo Liu
Ming-Hsuan Yang
29
18
0
14 Oct 2021
MISSFormer: An Effective Medical Image Segmentation Transformer
MISSFormer: An Effective Medical Image Segmentation Transformer
Xiaohong Huang
Zhifang Deng
Dandan Li
Xueguang Yuan
ViT
MedIm
87
172
0
15 Sep 2021
Unified Focal loss: Generalising Dice and cross entropy-based losses to
  handle class imbalanced medical image segmentation
Unified Focal loss: Generalising Dice and cross entropy-based losses to handle class imbalanced medical image segmentation
Michael Yeung
Evis Sala
Carola-Bibiane Schönlieb
L. Rundo
30
393
0
08 Feb 2021
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
232
75,445
0
18 May 2015
1