Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2312.08890
Cited By
Defenses in Adversarial Machine Learning: A Survey
13 December 2023
Baoyuan Wu
Shaokui Wei
Mingli Zhu
Meixi Zheng
Zihao Zhu
Mingda Zhang
Hongrui Chen
Danni Yuan
Li Liu
Qingshan Liu
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Defenses in Adversarial Machine Learning: A Survey"
16 / 16 papers shown
Title
Deciphering the Definition of Adversarial Robustness for post-hoc OOD Detectors
Peter Lorenz
Mario Fernandez
Jens Müller
Ullrich Kothe
AAML
56
1
0
21 Jun 2024
Detecting Backdoors in Pre-trained Encoders
Shiwei Feng
Guanhong Tao
Shuyang Cheng
Guangyu Shen
Xiangzhe Xu
Yingqi Liu
Kaiyuan Zhang
Shiqing Ma
Xiangyu Zhang
63
45
0
23 Mar 2023
Backdoor Defense via Deconfounded Representation Learning
Zaixin Zhang
Qi Liu
Zhicai Wang
Zepu Lu
Qingyong Hu
AAML
42
39
0
13 Mar 2023
Efficient and Effective Augmentation Strategy for Adversarial Training
Sravanti Addepalli
Samyak Jain
R. Venkatesh Babu
AAML
51
57
0
27 Oct 2022
InfoAT: Improving Adversarial Training Using the Information Bottleneck Principle
Mengting Xu
Tao Zhang
Zhongnian Li
Daoqiang Zhang
AAML
27
15
0
23 Jun 2022
Adversarial Attack on Attackers: Post-Process to Mitigate Black-Box Score-Based Query Attacks
Sizhe Chen
Zhehao Huang
Qinghua Tao
Yingwen Wu
Cihang Xie
X. Huang
AAML
103
27
0
24 May 2022
Diffusion Models for Adversarial Purification
Weili Nie
Brandon Guo
Yujia Huang
Chaowei Xiao
Arash Vahdat
Anima Anandkumar
WIGM
184
410
0
16 May 2022
A Survey of Robust Adversarial Training in Pattern Recognition: Fundamental, Theory, and Methodologies
Zhuang Qian
Kaizhu Huang
Qiufeng Wang
Xu-Yao Zhang
OOD
AAML
ObjD
39
71
0
26 Mar 2022
On the Convergence and Robustness of Adversarial Training
Yisen Wang
Xingjun Ma
James Bailey
Jinfeng Yi
Bowen Zhou
Quanquan Gu
AAML
183
344
0
15 Dec 2021
Are Transformers More Robust Than CNNs?
Yutong Bai
Jieru Mei
Alan Yuille
Cihang Xie
ViT
AAML
167
256
0
10 Nov 2021
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Hanxun Huang
Yisen Wang
S. Erfani
Quanquan Gu
James Bailey
Xingjun Ma
AAML
TPM
44
100
0
07 Oct 2021
On the Effectiveness of Small Input Noise for Defending Against Query-based Black-Box Attacks
Junyoung Byun
Hyojun Go
Changick Kim
AAML
118
17
0
13 Jan 2021
Adversarial Vertex Mixup: Toward Better Adversarially Robust Generalization
Saehyung Lee
Hyungyu Lee
Sungroh Yoon
AAML
148
113
0
05 Mar 2020
A New Defense Against Adversarial Images: Turning a Weakness into a Strength
Tao Yu
Shengyuan Hu
Chuan Guo
Wei-Lun Chao
Kilian Q. Weinberger
AAML
36
94
0
16 Oct 2019
SentiNet: Detecting Localized Universal Attacks Against Deep Learning Systems
Edward Chou
Florian Tramèr
Giancarlo Pellegrino
AAML
159
284
0
02 Dec 2018
ComDefend: An Efficient Image Compression Model to Defend Adversarial Examples
Xiaojun Jia
Xingxing Wei
Xiaochun Cao
H. Foroosh
AAML
43
259
0
30 Nov 2018
1