Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2312.10531
Cited By
How to Train Neural Field Representations: A Comprehensive Study and Benchmark
16 December 2023
Samuele Papa
Riccardo Valperga
David M. Knigge
Miltiadis Kofinas
Phillip Lippe
J. Sonke
E. Gavves
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How to Train Neural Field Representations: A Comprehensive Study and Benchmark"
10 / 10 papers shown
Title
End-to-End Implicit Neural Representations for Classification
Alexander Gielisse
J. C. V. Gemert
42
0
0
23 Mar 2025
ARC: Anchored Representation Clouds for High-Resolution INR Classification
Joost Luijmes
Alexander Gielisse
Roman Knyazhitskiy
J. C. V. Gemert
47
1
0
19 Mar 2025
On the Internal Representations of Graph Metanetworks
Taesun Yeom
Jaeho Lee
GNN
54
0
0
12 Mar 2025
Geometric Neural Process Fields
Wenzhe Yin
Zehao Xiao
Jiayi Shen
Yunlu Chen
Cees G. M. Snoek
J. Sonke
E. Gavves
AI4CE
38
0
0
04 Feb 2025
Fast Training of Sinusoidal Neural Fields via Scaling Initialization
Taesun Yeom
Sangyoon Lee
Jaeho Lee
48
2
0
07 Oct 2024
Latent-INR: A Flexible Framework for Implicit Representations of Videos with Discriminative Semantics
Shishira R. Maiya
Anubhav Gupta
M. Gwilliam
Max Ehrlich
Abhinav Shrivastava
33
3
1
05 Aug 2024
Grounding Continuous Representations in Geometry: Equivariant Neural Fields
David R. Wessels
David M. Knigge
Samuele Papa
Riccardo Valperga
Sharvaree P. Vadgama
E. Gavves
Erik J. Bekkers
33
7
0
09 Jun 2024
Git Re-Basin: Merging Models modulo Permutation Symmetries
Samuel K. Ainsworth
J. Hayase
S. Srinivasa
MoMe
239
313
0
11 Sep 2022
From data to functa: Your data point is a function and you can treat it like one
Emilien Dupont
Hyunjik Kim
S. M. Ali Eslami
Danilo Jimenez Rezende
Dan Rosenbaum
TDI
3DPC
160
136
0
28 Jan 2022
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes
David W. Romero
Robert-Jan Bruintjes
Jakub M. Tomczak
Erik J. Bekkers
Mark Hoogendoorn
J. C. V. Gemert
74
81
0
15 Oct 2021
1