ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.10988
  4. Cited By
Graph Invariant Learning with Subgraph Co-mixup for Out-Of-Distribution
  Generalization

Graph Invariant Learning with Subgraph Co-mixup for Out-Of-Distribution Generalization

18 December 2023
Tianrui Jia
Haoyang Li
Cheng Yang
Tao Tao
Chuan Shi
    OOD
ArXivPDFHTML

Papers citing "Graph Invariant Learning with Subgraph Co-mixup for Out-Of-Distribution Generalization"

18 / 18 papers shown
Title
Soft causal learning for generalized molecule property prediction: An environment perspective
Soft causal learning for generalized molecule property prediction: An environment perspective
Limin Li
Kuo Yang
Wenjie Du
Pengkun Wang
Zhengyang Zhou
Yang Wang
OOD
AI4CE
36
0
0
07 May 2025
Towards Invariance to Node Identifiers in Graph Neural Networks
Towards Invariance to Node Identifiers in Graph Neural Networks
Maya Bechler-Speicher
Moshe Eliasof
Carola-Bibiane Schönlieb
Ran Gilad-Bachrach
Amir Globerson
48
1
0
20 Feb 2025
BrainOOD: Out-of-distribution Generalizable Brain Network Analysis
BrainOOD: Out-of-distribution Generalizable Brain Network Analysis
Jiaxing Xu
Yongqiang Chen
Xia Dong
Mengcheng Lan
Tiancheng Huang
Qingtian Bian
James Cheng
Yiping Ke
OOD
57
0
0
02 Feb 2025
On the Utilization of Unique Node Identifiers in Graph Neural Networks
On the Utilization of Unique Node Identifiers in Graph Neural Networks
Maya Bechler-Speicher
Moshe Eliasof
Carola-Bibiane Schönlieb
Ran Gilad-Bachrach
Amir Globerson
23
0
0
04 Nov 2024
A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation
A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation
Kexin Zhang
Shuhan Liu
Song Wang
Weili Shi
Chen Chen
Pan Li
Sheng R. Li
Jundong Li
Kaize Ding
OOD
45
2
0
25 Oct 2024
DIVE: Subgraph Disagreement for Graph Out-of-Distribution Generalization
DIVE: Subgraph Disagreement for Graph Out-of-Distribution Generalization
Xin Sun
Liang Wang
Qiang Liu
Shu Wu
Zilei Wang
Liang Wang
OOD
CML
28
5
0
08 Aug 2024
Improving Graph Out-of-distribution Generalization on Real-world Data
Improving Graph Out-of-distribution Generalization on Real-world Data
Can Xu
Yao Cheng
Jianxiang Yu
Haosen Wang
Jingsong Lv
Xiang Li
OOD
21
0
0
14 Jul 2024
Teleporter Theory: A General and Simple Approach for Modeling
  Cross-World Counterfactual Causality
Teleporter Theory: A General and Simple Approach for Modeling Cross-World Counterfactual Causality
Jiangmeng Li
Bin Qin
Qirui Ji
Yi Li
Wenwen Qiang
Jianwen Cao
Fanjiang Xu
36
0
0
17 Jun 2024
Learning Invariant Representations of Graph Neural Networks via Cluster
  Generalization
Learning Invariant Representations of Graph Neural Networks via Cluster Generalization
Donglin Xia
Xiao Wang
Nian Liu
Chuan Shi
32
3
0
06 Mar 2024
Pairwise Alignment Improves Graph Domain Adaptation
Pairwise Alignment Improves Graph Domain Adaptation
Shikun Liu
Deyu Zou
Han Zhao
Pan Li
OOD
21
7
0
02 Mar 2024
Data Augmentation on Graphs: A Technical Survey
Data Augmentation on Graphs: A Technical Survey
Jiajun Zhou
Chenxuan Xie
Shengbo Gong
Z. Wen
Xiangyu Zhao
Qi Xuan
Xiaoniu Yang
AI4TS
11
8
0
20 Dec 2022
Discovering Invariant Rationales for Graph Neural Networks
Discovering Invariant Rationales for Graph Neural Networks
Yingmin Wu
Xiang Wang
An Zhang
Xiangnan He
Tat-Seng Chua
OOD
AI4CE
89
170
0
30 Jan 2022
DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for
  AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise
  Annotations
DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise Annotations
Yuanfeng Ji
Lu Zhang
Jiaxiang Wu
Bing Wu
Long-Kai Huang
...
Ping Luo
Shuigeng Zhou
Junzhou Huang
Peilin Zhao
Yatao Bian
OOD
54
73
0
24 Jan 2022
Graph Transplant: Node Saliency-Guided Graph Mixup with Local Structure
  Preservation
Graph Transplant: Node Saliency-Guided Graph Mixup with Local Structure Preservation
Joonhyung Park
Hajin Shim
Eunho Yang
79
48
0
10 Nov 2021
Co-Mixup: Saliency Guided Joint Mixup with Supermodular Diversity
Co-Mixup: Saliency Guided Joint Mixup with Supermodular Diversity
Jang-Hyun Kim
Wonho Choo
Hosan Jeong
Hyun Oh Song
195
173
0
05 Feb 2021
Explainability in Graph Neural Networks: A Taxonomic Survey
Explainability in Graph Neural Networks: A Taxonomic Survey
Hao Yuan
Haiyang Yu
Shurui Gui
Shuiwang Ji
159
463
0
31 Dec 2020
From Local Structures to Size Generalization in Graph Neural Networks
From Local Structures to Size Generalization in Graph Neural Networks
Gilad Yehudai
Ethan Fetaya
E. Meirom
Gal Chechik
Haggai Maron
GNN
AI4CE
128
112
0
17 Oct 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
888
0
02 Mar 2020
1