Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2312.15551
Cited By
On the Benefits of Public Representations for Private Transfer Learning under Distribution Shift
24 December 2023
Pratiksha Thaker
Amrith Rajagopal Setlur
Zhiwei Steven Wu
Virginia Smith
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Benefits of Public Representations for Private Transfer Learning under Distribution Shift"
6 / 6 papers shown
Title
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
134
344
0
13 Oct 2021
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
144
348
0
25 Sep 2021
Do Not Let Privacy Overbill Utility: Gradient Embedding Perturbation for Private Learning
Da Yu
Huishuai Zhang
Wei Chen
Tie-Yan Liu
FedML
SILM
91
110
0
25 Feb 2021
Leveraging Public Data for Practical Private Query Release
Terrance Liu
G. Vietri
Thomas Steinke
Jonathan R. Ullman
Zhiwei Steven Wu
148
58
0
17 Feb 2021
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
267
1,808
0
14 Dec 2020
Privately Learning High-Dimensional Distributions
Gautam Kamath
Jerry Li
Vikrant Singhal
Jonathan R. Ullman
FedML
62
147
0
01 May 2018
1