ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.15944
  4. Cited By
BAL: Balancing Diversity and Novelty for Active Learning

BAL: Balancing Diversity and Novelty for Active Learning

26 December 2023
Jingyao Li
Pengguang Chen
Shaozuo Yu
Shu-Lin Liu
Jiaya Jia
ArXivPDFHTML

Papers citing "BAL: Balancing Diversity and Novelty for Active Learning"

6 / 6 papers shown
Title
Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts
Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts
Yunxin Li
Shenyuan Jiang
Baotian Hu
Longyue Wang
Wanqi Zhong
Wenhan Luo
Lin Ma
Min-Ling Zhang
MoE
39
28
0
18 May 2024
Active Finetuning: Exploiting Annotation Budget in the
  Pretraining-Finetuning Paradigm
Active Finetuning: Exploiting Annotation Budget in the Pretraining-Finetuning Paradigm
Yichen Xie
Han Lu
Junchi Yan
Xiaokang Yang
M. Tomizuka
Wei Zhan
38
30
0
25 Mar 2023
Efficient Bayesian Updates for Deep Learning via Laplace Approximations
Efficient Bayesian Updates for Deep Learning via Laplace Approximations
Denis Huseljic
M. Herde
Lukas Rauch
Paul Hahn
Zhixin Huang
D. Kottke
S. Vogt
Bernhard Sick
BDL
16
0
0
12 Oct 2022
Active Learning on a Budget: Opposite Strategies Suit High and Low
  Budgets
Active Learning on a Budget: Opposite Strategies Suit High and Low Budgets
Guy Hacohen
Avihu Dekel
D. Weinshall
124
116
0
06 Feb 2022
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
305
7,434
0
11 Nov 2021
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1