ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.06548
  4. Cited By
Enhancing Consistency and Mitigating Bias: A Data Replay Approach for Incremental Learning
v1v2 (latest)

Enhancing Consistency and Mitigating Bias: A Data Replay Approach for Incremental Learning

12 January 2024
Chenyang Wang
Junjun Jiang
Xingyu Hu
Xianming Liu
Xiangyang Ji
ArXiv (abs)PDFHTML

Papers citing "Enhancing Consistency and Mitigating Bias: A Data Replay Approach for Incremental Learning"

42 / 42 papers shown
Title
EFC++: Elastic Feature Consolidation with Prototype Re-balancing for Cold Start Exemplar-free Incremental Learning
EFC++: Elastic Feature Consolidation with Prototype Re-balancing for Cold Start Exemplar-free Incremental Learning
Simone Magistri
Tomaso Trinci
Albin Soutif--Cormerais
Joost van de Weijer
Andrew D. Bagdanov
256
0
0
13 Mar 2025
Integrating Dual Prototypes for Task-Wise Adaption in Pre-Trained Model-Based Class-Incremental Learning
Integrating Dual Prototypes for Task-Wise Adaption in Pre-Trained Model-Based Class-Incremental Learning
Zhiming Xu
Steve Yang
Baile Xu
Jian Zhao
Furao Shen
CLL
264
0
0
26 Nov 2024
Learning Towards the Largest Margins
Learning Towards the Largest Margins
Xiong Zhou
Xianming Liu
Deming Zhai
Junjun Jiang
Xin Gao
Xiangyang Ji
69
12
0
23 Jun 2022
Learning to Imagine: Diversify Memory for Incremental Learning using
  Unlabeled Data
Learning to Imagine: Diversify Memory for Incremental Learning using Unlabeled Data
Yujin Tang
Yifan Peng
Weishi Zheng
CLL
90
34
0
19 Apr 2022
Class-Incremental Learning with Strong Pre-trained Models
Class-Incremental Learning with Strong Pre-trained Models
Tz-Ying Wu
Gurumurthy Swaminathan
Zhizhong Li
Avinash Ravichandran
Nuno Vasconcelos
Rahul Bhotika
Stefano Soatto
CLL
176
73
0
07 Apr 2022
Constrained Few-shot Class-incremental Learning
Constrained Few-shot Class-incremental Learning
Michael Hersche
G. Karunaratne
G. Cherubini
Luca Benini
Abu Sebastian
Abbas Rahimi
CLL
147
155
0
30 Mar 2022
Energy-based Latent Aligner for Incremental Learning
Energy-based Latent Aligner for Incremental Learning
K. J. Joseph
Salman Khan
Fahad Shahbaz Khan
Rao Muhammad Anwer
V. Balasubramanian
CLL
119
51
0
28 Mar 2022
Doodle It Yourself: Class Incremental Learning by Drawing a Few Sketches
Doodle It Yourself: Class Incremental Learning by Drawing a Few Sketches
A. Bhunia
Viswanatha Reddy Gajjala
Subhadeep Koley
Rohit Kundu
Aneeshan Sain
Tao Xiang
Yi-Zhe Song
CLL
130
31
0
28 Mar 2022
R-DFCIL: Relation-Guided Representation Learning for Data-Free Class
  Incremental Learning
R-DFCIL: Relation-Guided Representation Learning for Data-Free Class Incremental Learning
Qiankun Gao
Chen Zhao
Guohao Li
Jian Zhang
CLL
120
78
0
24 Mar 2022
Deep Class Incremental Learning from Decentralized Data
Deep Class Incremental Learning from Decentralized Data
Xiaohan Zhang
Songlin Dong
Jinjie Chen
Qiaoling Tian
Yihong Gong
Xiaopeng Hong
CLL
97
12
0
11 Mar 2022
Provable Guarantees for Understanding Out-of-distribution Detection
Provable Guarantees for Understanding Out-of-distribution Detection
Peyman Morteza
Yixuan Li
OODD
135
100
0
01 Dec 2021
ReAct: Out-of-distribution Detection With Rectified Activations
ReAct: Out-of-distribution Detection With Rectified Activations
Yiyou Sun
Chuan Guo
Yixuan Li
OODD
213
522
0
24 Nov 2021
DyTox: Transformers for Continual Learning with DYnamic TOken eXpansion
DyTox: Transformers for Continual Learning with DYnamic TOken eXpansion
Arthur Douillard
Alexandre Ramé
Guillaume Couairon
Matthieu Cord
CLL
218
340
0
22 Nov 2021
Overcoming Catastrophic Forgetting in Incremental Few-Shot Learning by
  Finding Flat Minima
Overcoming Catastrophic Forgetting in Incremental Few-Shot Learning by Finding Flat Minima
Guangyuan Shi
Jiaxin Chen
Wenlong Zhang
Li-Ming Zhan
Xiao-Ming Wu
CLL
249
170
0
30 Oct 2021
Subspace Regularizers for Few-Shot Class Incremental Learning
Subspace Regularizers for Few-Shot Class Incremental Learning
Afra Feyza Akyürek
Ekin Akyürek
Derry Wijaya
Jacob Andreas
CLL
121
70
0
13 Oct 2021
Always Be Dreaming: A New Approach for Data-Free Class-Incremental
  Learning
Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning
James Smith
Yen-Chang Hsu
John C. Balloch
Yilin Shen
Hongxia Jin
Z. Kira
CLL
144
178
0
17 Jun 2021
New Insights on Reducing Abrupt Representation Change in Online
  Continual Learning
New Insights on Reducing Abrupt Representation Change in Online Continual Learning
Lucas Caccia
Rahaf Aljundi
Nader Asadi
Tinne Tuytelaars
Joelle Pineau
Eugene Belilovsky
CLL
198
222
0
11 Apr 2021
DER: Dynamically Expandable Representation for Class Incremental
  Learning
DER: Dynamically Expandable Representation for Class Incremental Learning
Shipeng Yan
Jiangwei Xie
Xuming He
CLL
107
501
0
31 Mar 2021
Distilling Causal Effect of Data in Class-Incremental Learning
Distilling Causal Effect of Data in Class-Incremental Learning
Xinting Hu
Kaihua Tang
Chunyan Miao
Xiansheng Hua
Hanwang Zhang
CML
319
184
0
02 Mar 2021
Incremental Learning via Rate Reduction
Incremental Learning via Rate Reduction
Ziyang Wu
Christina Baek
Chong You
Yi-An Ma
CLL
92
42
0
30 Nov 2020
Energy-based Out-of-distribution Detection
Energy-based Out-of-distribution Detection
Weitang Liu
Xiaoyun Wang
John Douglas Owens
Yixuan Li
OODD
549
1,483
0
08 Oct 2020
Memory Efficient Class-Incremental Learning for Image Classification
Memory Efficient Class-Incremental Learning for Image Classification
Hanbin Zhao
Haibo Wang
Yongjian Fu
Leilei Gan
Xi Li
CLLVLM
135
88
0
04 Aug 2020
SS-IL: Separated Softmax for Incremental Learning
SS-IL: Separated Softmax for Incremental Learning
Hongjoon Ahn
Jihwan Kwak
S. Lim
Hyeonsu Bang
Hyojun Kim
Taesup Moon
CLL
222
190
0
31 Mar 2020
A Neural Dirichlet Process Mixture Model for Task-Free Continual
  Learning
A Neural Dirichlet Process Mixture Model for Task-Free Continual Learning
Soochan Lee
Junsoo Ha
Dongsu Zhang
Gunhee Kim
BDLCLL
159
224
0
03 Jan 2020
Dreaming to Distill: Data-free Knowledge Transfer via DeepInversion
Dreaming to Distill: Data-free Knowledge Transfer via DeepInversion
Hongxu Yin
Pavlo Molchanov
Zhizhong Li
J. Álvarez
Arun Mallya
Derek Hoiem
N. Jha
Jan Kautz
227
591
0
18 Dec 2019
Maintaining Discrimination and Fairness in Class Incremental Learning
Maintaining Discrimination and Fairness in Class Incremental Learning
Bowen Zhao
Xi Xiao
Guojun Gan
Bin Zhang
Shutao Xia
CLL
218
464
0
16 Nov 2019
Lifelong GAN: Continual Learning for Conditional Image Generation
Lifelong GAN: Continual Learning for Conditional Image Generation
Mengyao Zhai
Lei Chen
Frederick Tung
Jiawei He
Megha Nawhal
Greg Mori
CLL
166
188
0
23 Jul 2019
Uncertainty-guided Continual Learning with Bayesian Neural Networks
Uncertainty-guided Continual Learning with Bayesian Neural Networks
Sayna Ebrahimi
Mohamed Elhoseiny
Trevor Darrell
Marcus Rohrbach
CLLBDL
154
200
0
06 Jun 2019
Zero-Shot Knowledge Distillation in Deep Networks
Zero-Shot Knowledge Distillation in Deep Networks
Gaurav Kumar Nayak
Konda Reddy Mopuri
Vaisakh Shaj
R. Venkatesh Babu
Anirban Chakraborty
145
250
0
20 May 2019
Overcoming Catastrophic Forgetting with Unlabeled Data in the Wild
Overcoming Catastrophic Forgetting with Unlabeled Data in the Wild
Kibok Lee
Kimin Lee
Jinwoo Shin
Honglak Lee
CLL
215
213
0
29 Mar 2019
End-to-End Incremental Learning
End-to-End Incremental Learning
F. M. Castro
M. Marín-Jiménez
Nicolás Guil Mata
Cordelia Schmid
Alahari Karteek
CLL
279
1,192
0
25 Jul 2018
A Simple Unified Framework for Detecting Out-of-Distribution Samples and
  Adversarial Attacks
A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks
Kimin Lee
Kibok Lee
Honglak Lee
Jinwoo Shin
OODD
244
2,173
0
10 Jul 2018
Continuous Learning in Single-Incremental-Task Scenarios
Continuous Learning in Single-Incremental-Task Scenarios
Davide Maltoni
Vincenzo Lomonaco
CLL
182
314
0
22 Jun 2018
Deep Generative Dual Memory Network for Continual Learning
Deep Generative Dual Memory Network for Continual Learning
Nitin Kamra
Umang Gupta
Yan Liu
BDL
134
156
0
28 Oct 2017
Unified Deep Supervised Domain Adaptation and Generalization
Unified Deep Supervised Domain Adaptation and Generalization
Saeid Motiian
Marco Piccirilli
Donald Adjeroh
Gianfranco Doretto
OOD
272
814
0
28 Sep 2017
Continual Learning with Deep Generative Replay
Continual Learning with Deep Generative Replay
Hanul Shin
Jung Kwon Lee
Jaehong Kim
Jiwon Kim
KELMCLL
281
2,168
0
24 May 2017
iCaRL: Incremental Classifier and Representation Learning
iCaRL: Incremental Classifier and Representation Learning
Sylvestre-Alvise Rebuffi
Alexander Kolesnikov
G. Sperl
Christoph H. Lampert
CLLOOD
450
3,984
0
23 Nov 2016
A Baseline for Detecting Misclassified and Out-of-Distribution Examples
  in Neural Networks
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
412
3,625
0
07 Oct 2016
Learning without Forgetting
Learning without Forgetting
Zhizhong Li
Derek Hoiem
CLLOODSSL
733
4,670
0
29 Jun 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
3.0K
200,955
0
10 Dec 2015
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
560
20,547
0
09 Mar 2015
Domain Generalization via Invariant Feature Representation
Domain Generalization via Invariant Feature Representation
Krikamol Muandet
David Balduzzi
Bernhard Schölkopf
OOD
318
1,222
0
10 Jan 2013
1