Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2401.10216
Cited By
Enabling Efficient Equivariant Operations in the Fourier Basis via Gaunt Tensor Products
18 January 2024
Shengjie Luo
Tianlang Chen
Aditi S. Krishnapriyan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Enabling Efficient Equivariant Operations in the Fourier Basis via Gaunt Tensor Products"
19 / 19 papers shown
Title
Optimal Invariant Bases for Atomistic Machine Learning
Alice Allen
Emily Shinkle
Roxana Bujack
Nicholas Lubbers
27
0
0
30 Mar 2025
SE(3)-Equivariant Robot Learning and Control: A Tutorial Survey
Joohwan Seo
Soochul Yoo
Junwoo Chang
Hyunseok An
Hyunwoo Ryu
Soomi Lee
Arvind Kruthiventy
Jongeun Choi
R. Horowitz
62
2
0
12 Mar 2025
Equivariant Graph Network Approximations of High-Degree Polynomials for Force Field Prediction
Zhao Xu
Haiyang Yu
Montgomery Bohde
Shuiwang Ji
22
0
0
06 Nov 2024
Bridging Geometric States via Geometric Diffusion Bridge
Shengjie Luo
Yixian Xu
Di He
Shuxin Zheng
Tie-Yan Liu
Liwei Wang
27
0
0
31 Oct 2024
The Importance of Being Scalable: Improving the Speed and Accuracy of Neural Network Interatomic Potentials Across Chemical Domains
Eric Qu
Aditi S. Krishnapriyan
LRM
18
10
0
31 Oct 2024
Relaxed Equivariance via Multitask Learning
Ahmed A. A. Elhag
T. Konstantin Rusch
Francesco Di Giovanni
Michael Bronstein
40
2
0
23 Oct 2024
On the design space between molecular mechanics and machine learning force fields
Yuanqing Wang
Kenichiro Takaba
Michael S. Chen
Marcus Wieder
Yuzhi Xu
...
Kyunghyun Cho
Joe G. Greener
Peter K. Eastman
Stefano Martiniani
M. Tuckerman
AI4CE
26
4
0
03 Sep 2024
Improving Equivariant Model Training via Constraint Relaxation
Stefanos Pertigkiozoglou
Evangelos Chatzipantazis
Shubhendu Trivedi
Kostas Daniilidis
35
3
0
23 Aug 2024
GeoMFormer: A General Architecture for Geometric Molecular Representation Learning
Tianlang Chen
Shengjie Luo
Di He
Shuxin Zheng
Tie-Yan Liu
Liwei Wang
AI4CE
26
5
0
24 Jun 2024
Higher-Rank Irreducible Cartesian Tensors for Equivariant Message Passing
Viktor Zaverkin
Francesco Alesiani
Takashi Maruyama
Federico Errica
Henrik Christiansen
Makoto Takamoto
Nicolas Weber
Mathias Niepert
28
5
0
23 May 2024
Overcoming systematic softening in universal machine learning interatomic potentials by fine-tuning
Bowen Deng
Yunyeong Choi
Peichen Zhong
Janosh Riebesell
Shashwat Anand
Zhuohan Li
KyuJung Jun
Kristin A. Persson
Gerbrand Ceder
AI4CE
19
16
0
11 May 2024
Cartesian atomic cluster expansion for machine learning interatomic potentials
Bingqing Cheng
21
29
0
12 Feb 2024
From Peptides to Nanostructures: A Euclidean Transformer for Fast and Stable Machine Learned Force Fields
J. Frank
Oliver T. Unke
Klaus-Robert Muller
Stefan Chmiela
17
3
0
21 Sep 2023
Spherical Channels for Modeling Atomic Interactions
C. L. Zitnick
Abhishek Das
Adeesh Kolluru
Janice Lan
Muhammed Shuaibi
Anuroop Sriram
Zachary W. Ulissi
Brandon M. Wood
71
48
0
29 Jun 2022
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs
Yi-Lun Liao
Tess E. Smidt
73
142
0
23 Jun 2022
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
161
1,095
0
27 Apr 2021
Vector Neurons: A General Framework for SO(3)-Equivariant Networks
Congyue Deng
Or Litany
Yueqi Duan
A. Poulenard
Andrea Tagliasacchi
Leonidas J. Guibas
3DPC
99
264
0
25 Apr 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
183
1,218
0
08 Jan 2021
The Open Catalyst 2020 (OC20) Dataset and Community Challenges
L. Chanussot
Abhishek Das
Siddharth Goyal
Thibaut Lavril
Muhammed Shuaibi
...
Brandon M. Wood
Junwoong Yoon
Devi Parikh
C. L. Zitnick
Zachary W. Ulissi
204
370
0
20 Oct 2020
1