Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2402.01787
Cited By
Harm Amplification in Text-to-Image Models
1 February 2024
Susan Hao
Renee Shelby
Yuchi Liu
Hansa Srinivasan
Mukul Bhutani
Burcu Karagol Ayan
Ryan Poplin
Shivani Poddar
Sarah Laszlo
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Harm Amplification in Text-to-Image Models"
9 / 9 papers shown
Title
SPA-VL: A Comprehensive Safety Preference Alignment Dataset for Vision Language Model
Yongting Zhang
Lu Chen
Guodong Zheng
Yifeng Gao
Rui Zheng
...
Yu Qiao
Xuanjing Huang
Feng Zhao
Tao Gui
Jing Shao
VLM
55
22
0
17 Jun 2024
SoUnD Framework: Analyzing (So)cial Representation in (Un)structured (D)ata
Mark Díaz
Sunipa Dev
Emily Reif
Remi Denton
Vinodkumar Prabhakaran
20
3
0
28 Nov 2023
Social Biases through the Text-to-Image Generation Lens
Ranjita Naik
Besmira Nushi
83
111
0
30 Mar 2023
From plane crashes to algorithmic harm: applicability of safety engineering frameworks for responsible ML
Shalaleh Rismani
Renee Shelby
A. Smart
Edgar W. Jatho
Joshua A. Kroll
AJung Moon
Negar Rostamzadeh
19
19
0
06 Oct 2022
Red-Teaming the Stable Diffusion Safety Filter
Javier Rando
Daniel Paleka
David Lindner
Lennard Heim
Florian Tramèr
DiffM
116
179
0
03 Oct 2022
Data Feedback Loops: Model-driven Amplification of Dataset Biases
Rohan Taori
Tatsunori B. Hashimoto
53
42
0
08 Sep 2022
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generation Models
Jaemin Cho
Abhaysinh Zala
Mohit Bansal
ViT
121
167
0
08 Feb 2022
A Systematic Study of Bias Amplification
Melissa Hall
L. V. D. van der Maaten
Laura Gustafson
Maxwell Jones
Aaron B. Adcock
72
69
0
27 Jan 2022
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
280
3,347
0
23 Aug 2019
1