ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.02229
  4. Cited By
Vanilla Bayesian Optimization Performs Great in High Dimensions

Vanilla Bayesian Optimization Performs Great in High Dimensions

3 February 2024
Carl Hvarfner
E. Hellsten
Luigi Nardi
ArXivPDFHTML

Papers citing "Vanilla Bayesian Optimization Performs Great in High Dimensions"

6 / 6 papers shown
Title
Scaling Gaussian Processes for Learning Curve Prediction via Latent
  Kronecker Structure
Scaling Gaussian Processes for Learning Curve Prediction via Latent Kronecker Structure
Jihao Andreas Lin
Sebastian Ament
Maximilian Balandat
E. Bakshy
BDL
16
2
0
11 Oct 2024
Hyperparameter Optimization for Randomized Algorithms: A Case Study on Random Features
Hyperparameter Optimization for Randomized Algorithms: A Case Study on Random Features
Oliver R. A. Dunbar
Nicholas H. Nelsen
Maya Mutic
18
5
0
30 Jun 2024
CATBench: A Compiler Autotuning Benchmarking Suite for Black-box Optimization
CATBench: A Compiler Autotuning Benchmarking Suite for Black-box Optimization
Jacob O. Tørring
Carl Hvarfner
Luigi Nardi
Magnus Sjalander
43
0
0
24 Jun 2024
Are Random Decompositions all we need in High Dimensional Bayesian
  Optimisation?
Are Random Decompositions all we need in High Dimensional Bayesian Optimisation?
Juliusz Ziomek
Haitham Bou-Ammar
32
22
0
30 Jan 2023
Local Latent Space Bayesian Optimization over Structured Inputs
Local Latent Space Bayesian Optimization over Structured Inputs
N. Maus
Haydn Jones
Juston Moore
Matt J. Kusner
John Bradshaw
J. Gardner
BDL
47
69
0
28 Jan 2022
Re-Examining Linear Embeddings for High-Dimensional Bayesian
  Optimization
Re-Examining Linear Embeddings for High-Dimensional Bayesian Optimization
Benjamin Letham
Roberto Calandra
Akshara Rai
E. Bakshy
64
108
0
31 Jan 2020
1