ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.03753
  4. Cited By
Enhanced sampling of robust molecular datasets with uncertainty-based
  collective variables

Enhanced sampling of robust molecular datasets with uncertainty-based collective variables

6 February 2024
Aik Rui Tan
Johannes C. B. Dietschreit
Rafael Gómez-Bombarelli
ArXivPDFHTML

Papers citing "Enhanced sampling of robust molecular datasets with uncertainty-based collective variables"

5 / 5 papers shown
Title
Single-model uncertainty quantification in neural network potentials
  does not consistently outperform model ensembles
Single-model uncertainty quantification in neural network potentials does not consistently outperform model ensembles
Aik Rui Tan
S. Urata
Samuel Goldman
Johannes C. B. Dietschreit
Rafael Gómez-Bombarelli
BDL
24
41
0
02 May 2023
Hyperactive Learning (HAL) for Data-Driven Interatomic Potentials
Hyperactive Learning (HAL) for Data-Driven Interatomic Potentials
Cas van der Oord
Matthias Sachs
D. P. Kovács
Christoph Ortner
Gábor Csányi
36
64
0
09 Oct 2022
Differentiable Molecular Simulations for Control and Learning
Differentiable Molecular Simulations for Control and Learning
Wujie Wang
Simon Axelrod
Rafael Gómez-Bombarelli
AI4CE
91
49
0
27 Feb 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,134
0
06 Jun 2015
1